Indirect prediction of graphene nanoplatelets-reinforced cementitious composites compressive strength by using machine learning approaches

Machine Learning


  • Lin, Y. & Du, H. Graphene reinforced cement composites: A review. Constr. Build. Mater. 265, 120312. https://doi.org/10.1016/j.conbuildmat.2020.120312 (2020).

    Article 
    CAS 

    Google Scholar 

  • Han, B., Zhang, L. & Ou, J. Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, 2017).

    Book 

    Google Scholar 

  • Liu, Y. et al. Effects of reactive MgO on durability and microstructure of cement-based materials: Considering carbonation and pH value. Constr. Build. Mater. 426, 136216 (2024).

    Article 
    CAS 

    Google Scholar 

  • Wei, J. et al. Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates. Eng. Struct. 278, 115500 (2023).

    Article 

    Google Scholar 

  • Liu, Y. et al. State-of-the art on preparation, performance, and ecological applications of planting concrete. Case Stud. Constr. Mater. 20, e03131. https://doi.org/10.1016/j.cscm.2024.e03131 (2024).

    Article 

    Google Scholar 

  • Wang, X. et al. Improving bond of fiber-reinforced polymer bars with concrete through incorporating nanomaterials. Compos. B Eng. 239, 109960. https://doi.org/10.1016/j.compositesb.2022.109960 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lu, D., Wang, G., Du, X. & Wang, Y. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete. Int. J. Impact Eng. 103, 124–137 (2017).

    Article 

    Google Scholar 

  • He, H., Wang, S., Shen, W. & Zhang, W. The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures. Transp. Geotech. 42, 101061. https://doi.org/10.1016/j.trgeo.2023.101061 (2023).

    Article 

    Google Scholar 

  • Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306(5696), 666–669. https://doi.org/10.1126/science.1102896 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907. https://doi.org/10.1021/nl0731872 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, L., Zhao, Y., Jing, J. & Hou, H. Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process. J. Alloys Compd. 940, 168824 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, L. et al. Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mater. Sci. Eng.: A 804, 140793. https://doi.org/10.1016/j.msea.2021.140793 (2021).

    Article 
    CAS 

    Google Scholar 

  • Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett 8(10), 3498–3502. https://doi.org/10.1021/nl802558y (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, M., Shakeel, M., Khan, K., Akbar, S., & Khan, A. A Review on Fiber-Reinforced Foam Concrete. In ICEC 2022, Basel Switzerland: MDPI, p. 13. https://doi.org/10.3390/engproc2022022013 (2022).

  • Anas, M., Khan, M., Bilal, H., Jadoon, S., & Khan, M. N. Fiber Reinforced Concrete: A Review. In ICEC 2022, Basel Switzerland: MDPI, p. 3. https://doi.org/10.3390/engproc2022022003 (2022).

  • Wang, B. & Pang, B. Mechanical property and toughening mechanism of water reducing agents modified graphene nanoplatelets reinforced cement composites. Constr. Build. Mater. 226, 699–711. https://doi.org/10.1016/j.conbuildmat.2019.07.229 (2019).

    Article 
    CAS 

    Google Scholar 

  • Du, H. & Pang, S. D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 76, 10–19. https://doi.org/10.1016/j.cemconres.2015.05.007 (2015).

    Article 
    CAS 

    Google Scholar 

  • Peyvandi, A., Soroushian, P., Balachandra, A. M. & Sobolev, K. Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Constr. Build. Mater. 47, 111–117. https://doi.org/10.1016/j.conbuildmat.2013.05.002 (2013).

    Article 

    Google Scholar 

  • Pang, S. D., Gao, H. J., Xu, C., Quek, S. T., & Du, H. Strain and damage self-sensing cement composites with conductive graphene nanoplatelet. In J. P. Lynch, K.-W. Wang, and H. Sohn, Eds., p. 906126. https://doi.org/10.1117/12.2045329 (2014).

  • Le, J.-L., Du, H. & Pang, S. D. Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation. Compos. B Eng. 67, 555–563. https://doi.org/10.1016/j.compositesb.2014.08.005 (2014).

    Article 
    CAS 

    Google Scholar 

  • Cui, X. et al. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites. Compos. Part A Appl. Sci. Manuf. 93, 49–58. https://doi.org/10.1016/j.compositesa.2016.11.017 (2017).

    Article 
    CAS 

    Google Scholar 

  • Prabavathy, S., Jeyasubramanian, K., Prasanth, S., Hikku, G. S. & Robert, R. B. J. Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide. J. Build. Eng. 28, 101082. https://doi.org/10.1016/j.jobe.2019.101082 (2020).

    Article 

    Google Scholar 

  • Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577(7792), 647–651. https://doi.org/10.1038/s41586-020-1938-0 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, M. et al. Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting. J. Mater. Res. Technol. 21, 4138–4150 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yao, X. et al. AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition. Constr. Build. Mater. 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898 (2023).

    Article 

    Google Scholar 

  • Wang, B. & Shuang, D. Effect of graphene nanoplatelets on the properties, pore structure and microstructure of cement composites. Materials Express 8(5), 407–416. https://doi.org/10.1166/mex.2018.1447 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, X., Li, L., Xiang, Y., Wu, Y. & Wei, M. The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression. Front. Mater. https://doi.org/10.3389/fmats.2023.1332269 (2024).

    Article 

    Google Scholar 

  • Wang, B., Jiang, R. & Wu, Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite. Nanomaterials 6(11), 200. https://doi.org/10.3390/nano6110200 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J., Fu, J., Yang, Y. & Gu, C. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr. Build. Mater. 199, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.12.006 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Meng, W. & Khayat, K. H. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Compos. B Eng. 107, 113–122. https://doi.org/10.1016/j.compositesb.2016.09.069 (2016).

    Article 
    CAS 

    Google Scholar 

  • Matalkah, F. & Soroushian, P. Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder. Constr. Build. Mater. 249, 118773. https://doi.org/10.1016/j.conbuildmat.2020.118773 (2020).

    Article 
    CAS 

    Google Scholar 

  • Rocha, J. H. A., Toledo Filho, R. D. & Cayo-Chileno, N. G. Sustainable alternatives to CO2 reduction in the cement industry: A short review. Mater Today Proc 57, 436–439. https://doi.org/10.1016/j.matpr.2021.12.565 (2022).

    Article 
    CAS 

    Google Scholar 

  • Murugan, M., Santhanam, M., Sen Gupta, S., Pradeep, T. & Shah, S. P. Influence of 2D rGO nanosheets on the properties of OPC paste. Cem. Concr. Compos. 70, 48–59. https://doi.org/10.1016/j.cemconcomp.2016.03.005 (2016).

    Article 
    CAS 

    Google Scholar 

  • Adil Khan, M. K., Khan, M., Ali, S. Use of Marble Dust as a Filler Material in Flexible Pavements. In 4th International Conference on Sustainability in Civil Engineering, CUST, Islamabad, Pakistan, (2022).

  • Khan, K., Khan, I., Khan, M., Shakeel, M., & Khan, A. Mechanical and Physical Properties of Cellular Lightweight Concrete (CLC) Blocks. In Ist International Conference on Advances In Civil and Environmental Engineering, UET Taxila, Pakistan, 2022.

  • Junaid Khan Muhammad Shahab, M. S., Majid Khan, Investigation of Physical and Rheological Properties of Bitumen Modified with Bagasse Ash. In ICCRDM-2022. – Peshawar : UET Peshawar, 2022, ISBN: 969–23645–1–5,

  • Muhammad Shahab, M. R., Hamza Jamal, Majid Khan, Non-Linear charateristics of Asphalt Concrete under Repeated Cyclic Loading. In ICCRDM-2022. -Peshawar : UET Peshawar, 2022, ISBN: 969–23645–1–5,

  • Baloch, W. L., Khushnood, R. A. & Khaliq, W. Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures. Constr. Build. Mater. 185, 44–56. https://doi.org/10.1016/j.conbuildmat.2018.07.051 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chen, L. et al. Development of predictive models for sustainable concrete via genetic programming-based algorithms. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2023.04.180 (2023).

    Article 

    Google Scholar 

  • Sun, L. et al. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments. Adv. Struct. Eng. 26(3), 533–546. https://doi.org/10.1177/13694332221131153 (2022).

    Article 

    Google Scholar 

  • Long, X., Mao, M., Su, T., Su, Y. & Tian, M. Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Defence Technol. 23, 100–111. https://doi.org/10.1016/j.dt.2022.02.003 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wei, Z., Shuaiwen, K., Benqing, L. & Yiqun, H. Mixed-mode debonding in CFRP-to-steel fiber-reinforced concrete joints. J. Compos. Constr. 28(1), 4023069. https://doi.org/10.1061/JCCOF2.CCENG-4337 (2024).

    Article 

    Google Scholar 

  • Alyami, M. et al. Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2023.e02728 (2023).

    Article 

    Google Scholar 

  • Chen, C., Han, D. & Chang, C. C. MPCCT: Multimodal vision-language learning paradigm with context-based compact Transformer. Pattern Recognit. 147, 110084 (2024).

    Article 

    Google Scholar 

  • Lee, S., Vo, T. P., Thai, H.-T., Lee, J. & Patel, V. Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm. Eng. Struct. 238, 112109. https://doi.org/10.1016/j.engstruct.2021.112109 (2021).

    Article 

    Google Scholar 

  • Khan, M. et al. Forecasting the strength of graphene nanoparticles-reinforced cementitious composites using ensemble learning algorithms. Results Eng. 21, 101837. https://doi.org/10.1016/j.rineng.2024.101837 (2024).

    Article 
    CAS 

    Google Scholar 

  • Alyami, M. et al. Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2024.e02901 (2024).

    Article 

    Google Scholar 

  • Chen, C., Han, D. & Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowledge-Based Syst. 275, 110706 (2023).

    Article 

    Google Scholar 

  • Huang, H., Yuan, Y., Zhang, W. & Zhu, L. Property assessment of high-performance concrete containing three types of fibers. Int. J. Concr. Struct. Mater. 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kakasor, D. et al. Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete. Constr. Build. Mater. 400, 132604. https://doi.org/10.1016/j.conbuildmat.2023.132604 (2023).

    Article 
    CAS 

    Google Scholar 

  • Alyousef, R. et al. Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. Case Stud. Constr. Mater. 19, e02418. https://doi.org/10.1016/j.cscm.2023.e02418 (2023).

    Article 

    Google Scholar 

  • Li, H., Yang, Y., Wang, X. & Tang, H. Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete. Structures 58, 105500. https://doi.org/10.1016/j.istruc.2023.105500 (2023).

    Article 

    Google Scholar 

  • Khan, M. et al. Optimizing durability assessment: Machine learning models for depth of wear of environmentally-friendly concrete. Results Eng. https://doi.org/10.1016/j.rineng.2023.101625 (2023).

    Article 

    Google Scholar 

  • Shi, S., Han, D. & Cui, M. A multimodal hybrid parallel network intrusion detection model. Connect. Sci. https://doi.org/10.1080/09540091.2023.2227780 (2023).

    Article 

    Google Scholar 

  • Cao, J. et al. Crack detection in ultrahigh-performance concrete using robust principal component analysis and characteristic evaluation in the frequency domain. Struct. Health Monit. https://doi.org/10.1177/14759217231178457 (2023).

    Article 

    Google Scholar 

  • Alyami, M. et al. Application of metaheuristic optimization algorithms in predicting the compressive strength of 3D-printed fiber-reinforced concrete. Dev. Built Environ. https://doi.org/10.1016/j.dibe.2023.100307 (2023).

    Article 

    Google Scholar 

  • Wang, H., Han, D., Cui, M. & Chen, C. NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention. Conn. Sci. 35, 1–32 (2023).

    Article 
    CAS 

    Google Scholar 

  • Han, D. et al. LMCA: A lightweight anomaly network traffic detection model integrating adjusted mobilenet and coordinate attention mechanism for IoT. Telecommun. Syst. 84, 549–564 (2023).

    Article 

    Google Scholar 

  • Chen, L. et al. Development of predictive models for sustainable concrete via genetic programming-based algorithms. J. Mater. Res. Technol. 24, 6391–6410. https://doi.org/10.1016/j.jmrt.2023.04.180 (2023).

    Article 
    CAS 

    Google Scholar 

  • Biswas, R. et al. Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete. Constr. Build. Mater. 346, 128483. https://doi.org/10.1016/j.conbuildmat.2022.128483 (2022).

    Article 
    CAS 

    Google Scholar 

  • Dou, J. et al. Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group. Molecules 28, 7151 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, X. et al. Output voltage drop and input current ripple suppression for the pulse load power supply using virtual multiple quasi-notch-filters impedance. IEEE Trans. Power Electron. 38, 9552–9565 (2023).

    Article 
    ADS 

    Google Scholar 

  • Wu, Y. & Huang, H. predicting compressive and flexural strength of high-performance concrete using a dynamic catboost regression model combined with individual and ensemble optimization techniques. Mater. Today Commun. https://doi.org/10.1016/j.mtcomm.2024.108174 (2024).

    Article 

    Google Scholar 

  • Fei, R., Guo, Y., Li, J., Hu, B. & Yang, L. An Improved BPNN Method Based on Probability Density for Indoor Location. IEICE Trans. Inf. Syst. E106.D, 773–785 (2023).

  • Montazerian, A., Baghban, M. H., Ramachandra, R. & Goutianos, S. A machine learning approach for assessing the compressive strength of cementitious composites reinforced by graphene derivatives. Constr. Build. Mater. 409, 134014. https://doi.org/10.1016/J.CONBUILDMAT.2023.134014 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sun, J. et al. Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder. J. Build. Eng. 43, 102544. https://doi.org/10.1016/J.JOBE.2021.102544 (2021).

    Article 

    Google Scholar 

  • Yang, J. et al. Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites. Constr. Build. Mater. 394, 132179. https://doi.org/10.1016/j.conbuildmat.2023.132179 (2023).

    Article 
    CAS 

    Google Scholar 

  • Zhao, Y. et al. Intelligent control of multilegged robot smooth motion: A review. IEEE Access 11, 86645–86685 (2023).

    Article 

    Google Scholar 

  • Meng, S., Meng, F., Chi, H., Chen, H. & Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Franklin Inst. 360, 11397–11413 (2023).

    Article 
    MathSciNet 

    Google Scholar 

  • Zhao, Y. et al. Study of mechanical properties and early-stage deformation properties of graphene-modified cement-based materials. Constr. Build. Mater. 257, 119498. https://doi.org/10.1016/j.conbuildmat.2020.119498 (2020).

    Article 
    CAS 

    Google Scholar 

  • Lv, S., Ting, S., Liu, J. & Zhou, Q. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. CrystEngComm 16(36), 8508. https://doi.org/10.1039/C4CE00684D (2014).

    Article 
    CAS 

    Google Scholar 

  • Gong, K. et al. Reinforcing effects of graphene oxide on portland cement paste. J. Mater. Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125 (2015).

    Article 

    Google Scholar 

  • Baomin, W. & Shuang, D. Effect and mechanism of graphene nanoplatelets on hydration reaction, mechanical properties and microstructure of cement composites. Constr. Build. Mater. 228, 116720. https://doi.org/10.1016/j.conbuildmat.2019.116720 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, N., She, W., Du, F. & Xu, K. Experimental study on mechanical and functional properties of reduced graphene oxide/cement composites. Materials 13(13), 3015. https://doi.org/10.3390/ma13133015 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tong, T. et al. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr. Build. Mater. 106, 102–114. https://doi.org/10.1016/j.conbuildmat.2015.12.092 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sun, H., Ling, L., Ren, Z., Memon, S. A. & Xing, F. Effect of graphene oxide/graphene hybrid on mechanical properties of cement mortar and mechanism investigation. Nanomaterials 10(1), 113. https://doi.org/10.3390/nano10010113 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H., Monasterio, M., Cui, H. & Han, N. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Compos. Part A Appl. Sci. Manuf. 102, 263–272. https://doi.org/10.1016/j.compositesa.2017.07.022 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lv, S. et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022 (2013).

    Article 
    CAS 

    Google Scholar 

  • Metaxa, Z. S. Exfoliated graphene nanoplatelet cement-based nanocomposites as piezoresistive sensors: Influence of nanoreinforcement lateral size on monitoring capability. Ciência & Tecnologia dos Materiais 28(1), 73–79. https://doi.org/10.1016/j.ctmat.2015.12.001 (2016).

    Article 

    Google Scholar 

  • Liu, Q., Xu, Q., Yu, Q., Gao, R. & Tong, T. Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Constr. Build. Mater. 127, 565–576. https://doi.org/10.1016/j.conbuildmat.2016.10.024 (2016).

    Article 
    CAS 

    Google Scholar 

  • Jiang, Z., Ozbulut, O. E., & Harris, D. K. Graphene Nanoplatelets-Based Self-Sensing Cementitious Composites. In Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring, American Society of Mechanical Engineers, https://doi.org/10.1115/SMASIS2016-9188 (2016).

  • Cao, M., Zhang, H. & Zhang, C. Effect of graphene on mechanical properties of cement mortars. J. Cent. South Univ. 23(4), 919–925. https://doi.org/10.1007/s11771-016-3139-4 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wang, Y., Yang, J. & Ouyang, D. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism. Materials 12(22), 3753. https://doi.org/10.3390/ma12223753 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, S. et al. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 136, 314–328. https://doi.org/10.1016/j.conbuildmat.2017.01.006 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lv, S., Liu, J., Sun, T., Ma, Y. & Zhou, Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 64, 231–239. https://doi.org/10.1016/j.conbuildmat.2014.04.061 (2014).

    Article 

    Google Scholar 

  • Bai, S. et al. Research on electrical conductivity of graphene/cement composites. Adv. Cem. Res. 32(2), 45–52. https://doi.org/10.1680/jadcr.16.00170 (2020).

    Article 

    Google Scholar 

  • Sharma, S. & Kothiyal, N. C. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Constr. Build. Mater. 115, 256–268. https://doi.org/10.1016/j.conbuildmat.2016.04.019 (2016).

    Article 
    CAS 

    Google Scholar 

  • Zhai, S. et al. Investigation on preparation and multifunctionality of reduced graphene oxide cement mortar. Constr. Build. Mater. 275, 122119. https://doi.org/10.1016/j.conbuildmat.2020.122119 (2021).

    Article 
    CAS 

    Google Scholar 

  • Papanikolaou, I., Arena, N. & Al-Tabbaa, A. Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective. J. Clean. Prod. 240, 118202. https://doi.org/10.1016/j.jclepro.2019.118202 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ghazizadeh, S., Duffour, P., Skipper, N. T. & Bai, Y. Understanding the behaviour of graphene oxide in Portland cement paste. Cem. Concr. Res. 111, 169–182. https://doi.org/10.1016/j.cemconres.2018.05.016 (2018).

    Article 
    CAS 

    Google Scholar 

  • Wang, Q. et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater. 30(4), 349–356. https://doi.org/10.1016/S1872-5805(15)60194-9 (2015).

    Article 
    CAS 

    Google Scholar 

  • Liu, J., Li, Q. & Shilang, X. Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J. Mater. Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002649 (2019).

    Article 

    Google Scholar 

  • Dalla, P. T. et al. Multifunctional cement mortars enhanced with graphene nanoplatelets and carbon nanotubes. Sensors 21(3), 933. https://doi.org/10.3390/s21030933 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Farooq, F. et al. Experimental investigation of hybrid carbon nanotubes and graphite nanoplatelets on rheology, shrinkage, mechanical, and microstructure of SCCM. Materials 13(1), 230. https://doi.org/10.3390/ma13010230 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, W., Huang, Y., Lehane, B. & Ma, G. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Autom. Constr. 114, 103155. https://doi.org/10.1016/j.autcon.2020.103155 (2020).

    Article 

    Google Scholar 

  • ASTM C39/C39M-14, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA., (2014).

  • Chen, D. L., Zhao, J. W. & Qin, S. R. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 66, 2996–3010 (2023).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Alabduljabbar, H. et al. Forecasting compressive strength and electrical resistivity of graphite based nano-composites using novel artificial intelligence techniques. Case Stud. Constr. Mater. 18, e01848. https://doi.org/10.1016/j.cscm.2023.e01848 (2023).

    Article 

    Google Scholar 

  • Khan, M. et al. Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms. Heliyon https://doi.org/10.1016/j.heliyon.2023.e23375 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khan, A. et al. Predictive modeling for depth of wear of concrete modified with fly ash: A comparative analysis of genetic programming-based algorithms. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2023.e02744 (2023).

    Article 

    Google Scholar 

  • Zhang, J., Huang, Y., Ma, G. & Nener, B. Mixture optimization for environmental, economical and mechanical objectives in silica fume concrete: A novel frame-work based on machine learning and a new meta-heuristic algorithm. Resour. Conserv. Recycl. 167, 105395. https://doi.org/10.1016/j.resconrec.2021.105395 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tang, H. et al. Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. J. Appl. Polym. Sci. https://doi.org/10.1002/app.55502 (2024).

    Article 

    Google Scholar 

  • Alabduljabbar, H. et al. Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Case Stud. Constr. Mater. 18, e02074. https://doi.org/10.1016/j.cscm.2023.e02074 (2023).

    Article 

    Google Scholar 

  • Khan, M. & Javed, M. F. Towards sustainable construction: Machine learning based predictive models for strength and durability characteristics of blended cement concrete. Mater Today Commun 37, 107428. https://doi.org/10.1016/j.mtcomm.2023.107428 (2023).

    Article 
    CAS 

    Google Scholar 

  • Chen, G., Tang, W., Chen, S., Wang, S. & Cui, H. Prediction of self-healing of engineered cementitious composite using machine learning approaches. Appl. Sci. 12(7), 3605. https://doi.org/10.3390/app12073605 (2022).

    Article 
    CAS 

    Google Scholar 

  • Naderpour, H., Rafiean, A. H. & Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 16, 213–219. https://doi.org/10.1016/j.jobe.2018.01.007 (2018).

    Article 

    Google Scholar 

  • Chauhan, H., Jang, Y., Pradhan, S. & Moon, H. Personalized optimal room temperature and illuminance for maximizing occupant’s mental task performance using physiological data. J. Build. Eng. 78, 107757. https://doi.org/10.1016/j.jobe.2023.107757 (2023).

    Article 

    Google Scholar 

  • Jang, Y. et al. Multi-camera-based human activity recognition for human–robot collaboration in construction. Sensors 23(15), 6997. https://doi.org/10.3390/s23156997 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amin, M. N., Javed, M. F., Khan, K., Shalabi, F. I. & Qadir, M. G. Modeling compressive strength of eco-friendly volcanic ash mortar using artificial neural networking. Symmetry (Basel) 13(11), 2009. https://doi.org/10.3390/sym13112009 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Farooq, F. et al. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl. Sci. 10(20), 7330. https://doi.org/10.3390/app10207330 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Nazar, S. et al. Development of the new prediction models for the compressive strength of nanomodified concrete using novel machine learning techniques. Buildings 12(12), 2160. https://doi.org/10.3390/buildings12122160 (2022).

    Article 

    Google Scholar 

  • Zhou, J. et al. Decision tree models for the estimation of geo-polymer concrete compressive strength. Math. Biosci. Eng. 21(1), 1413–1444. https://doi.org/10.3934/mbe.2024061 (2023).

    Article 

    Google Scholar 

  • Ma, H., Liu, J., Zhang, J. & Huang, J. Estimating the compressive strength of cement-based materials with mining waste using support vector machine, decision tree, and random forest models. Adv. Civil Eng. 2021, 1–10. https://doi.org/10.1155/2021/6629466 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tangirala, S. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. Int. J. Adv. Comput. Sci. Appl. https://doi.org/10.14569/IJACSA.2020.0110277 (2020).

    Article 

    Google Scholar 

  • Alabdullah, A. A. et al. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr. Build. Mater. 345, 128296. https://doi.org/10.1016/j.conbuildmat.2022.128296 (2022).

    Article 
    CAS 

    Google Scholar 

  • Althoey, F. et al. Machine learning based computational approach for crack width detection of self-healing concrete. Case Stud. Constr. Mater. 17, e01610. https://doi.org/10.1016/j.cscm.2022.e01610 (2022).

    Article 

    Google Scholar 

  • Amin, M. N. et al. Investigating the bond strength of FRP laminates with concrete using LIGHT GBM and SHAPASH analysis. Polymers (Basel) 14(21), 4717. https://doi.org/10.3390/polym14214717 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iqbal, M., Zhang, D., Khan, M. I., Zahid, M. & Jalal, F. E. Effects of Rebar size and volume fraction of glass fibers on tensile strength retention of GFRP Rebars in alkaline environment via RSM and SHAP analyses. J. Mater. Civil Eng. https://doi.org/10.1061/JMCEE7.MTENG-15589 (2023).

    Article 

    Google Scholar 

  • Haijie He, E. et al. Deciphering size-induced influence of carbon dots on mechanical performance of cement composites. Constr. Build. Mater. 425, 136030. https://doi.org/10.1016/j.conbuildmat.2024.136030 (2024).

    Article 
    CAS 

    Google Scholar 

  • Lu, S. F., Xue, N., Ma, W. S., Song, X. J. & Jiang, X. Linear and nonlinear dynamics responses of an axially moving laminated composite plate-reinforced with graphene nanoplatelets. Int. J. Struct. Stab. Dyn. https://doi.org/10.1142/S0219455425500361 (2024).

    Article 

    Google Scholar 

  • Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685. https://doi.org/10.1109/21.256541 (1993).

    Article 

    Google Scholar 

  • Abunama, T., Othman, F., Ansari, M. & El-Shafie, A. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environ. Sci. Pollut. Res. 26(4), 3368–3381. https://doi.org/10.1007/s11356-018-3749-5 (2019).

    Article 

    Google Scholar 

  • Golafshani, E. M., Behnood, A. & Arashpour, M. Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Constr. Build. Mater. 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266 (2020).

    Article 

    Google Scholar 

  • Akan, R. & Keskin, S. N. The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils. SN Appl. Sci. 1(8), 843. https://doi.org/10.1007/s42452-019-0883-8 (2019).

    Article 

    Google Scholar 

  • Sadeghizadeh, A. et al. Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study. J. Environ. Manage 232, 342–353. https://doi.org/10.1016/j.jenvman.2018.11.047 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sada, S. O. & Ikpeseni, S. C. Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance. Heliyon 7(2), e06136. https://doi.org/10.1016/j.heliyon.2021.e06136 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Imtiaz, L., Rehman, S. K. U., Memon, S. A., Khan, M. K. & Javed, M. F. A review of recent developments and advances in eco-friendly geopolymer concrete. Appl. Sci. 10(21), 7838. https://doi.org/10.3390/app10217838 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hossain, A., & Rahman, A. Sensor-Controlled Intelligent Vehicle Systems: Demand and Needs for a Global Automotive Landscape. In Comprehensive Materials Processing, Elsevier, pp. 473–497. https://doi.org/10.1016/B978-0-08-096532-1.01321-2 (2014).

  • Javed, M. F. et al. New prediction model for the ultimate axial capacity of concrete-filled steel tubes: An evolutionary approach. Crystals 10, 741 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nabavi-Pelesaraei, A., Rafiee, S., Hosseini-Fashami, F., & Chau, K. Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products. In Predictive Modelling for Energy Management and Power Systems Engineering, pp. 299–334, https://doi.org/10.1016/B978-0-12-817772-3.00011-2 (2021).

  • Alyousef, R. et al. Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning. Case Stud. Constr. Mater. 19, e02459. https://doi.org/10.1016/j.cscm.2023.e02459 (2023).

    Article 

    Google Scholar 

  • Lundberg, S.M., & Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, (2017).

  • Lundberg, S. M., & Lee, S.-I. A unified approach to interpreting model predictions. In NeurIPS Proceedings, (2017).

  • Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alabdullah, A. A., Zahid, M., Khan, K., Amin, M. N., & Jalal, F. E. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis, https://doi.org/10.1016/j.conbuildmat.2022.128296 (2022).

  • Khan, M. et al. Forecasting the strength of graphene nanoparticles-reinforced cementitious composites using ensemble learning algorithms. Res. Eng. 21, 101837. https://doi.org/10.1016/j.rineng.2024.101837 (2024).

  • Dong, W., Huang, Y., Lehane, B. & Ma, G. Multi-objective design optimization for graphite-based nanomaterials reinforced cementitious composites: a data-driven method with machine learning and NSGA-II. Constr. Build. Mater. 331, 127198 (2022).

    Article 
    CAS 

    Google Scholar 

  • Karim, R., Islam, Md. H., Datta, S. D. & Kashem, A. Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Stud. Constr. Mater. 20, e02828. https://doi.org/10.1016/J.CSCM.2023.E02828 (2024).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *