Lin, Y. & Du, H. Graphene reinforced cement composites: A review. Constr. Build. Mater. 265, 120312. https://doi.org/10.1016/j.conbuildmat.2020.120312 (2020).
Google Scholar
Han, B., Zhang, L. & Ou, J. Smart and Multifunctional Concrete Toward Sustainable Infrastructures (Springer Singapore, 2017).
Google Scholar
Liu, Y. et al. Effects of reactive MgO on durability and microstructure of cement-based materials: Considering carbonation and pH value. Constr. Build. Mater. 426, 136216 (2024).
Google Scholar
Wei, J. et al. Seismic performance of concrete-filled steel tubular composite columns with ultra high performance concrete plates. Eng. Struct. 278, 115500 (2023).
Google Scholar
Liu, Y. et al. State-of-the art on preparation, performance, and ecological applications of planting concrete. Case Stud. Constr. Mater. 20, e03131. https://doi.org/10.1016/j.cscm.2024.e03131 (2024).
Google Scholar
Wang, X. et al. Improving bond of fiber-reinforced polymer bars with concrete through incorporating nanomaterials. Compos. B Eng. 239, 109960. https://doi.org/10.1016/j.compositesb.2022.109960 (2022).
Google Scholar
Lu, D., Wang, G., Du, X. & Wang, Y. A nonlinear dynamic uniaxial strength criterion that considers the ultimate dynamic strength of concrete. Int. J. Impact Eng. 103, 124–137 (2017).
Google Scholar
He, H., Wang, S., Shen, W. & Zhang, W. The influence of pipe-jacking tunneling on deformation of existing tunnels in soft soils and the effectiveness of protection measures. Transp. Geotech. 42, 101061. https://doi.org/10.1016/j.trgeo.2023.101061 (2023).
Google Scholar
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306(5696), 666–669. https://doi.org/10.1126/science.1102896 (2004).
Google Scholar
Balandin, A. A. et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 8(3), 902–907. https://doi.org/10.1021/nl0731872 (2008).
Google Scholar
Chen, L., Zhao, Y., Jing, J. & Hou, H. Microstructural evolution in graphene nanoplatelets reinforced magnesium matrix composites fabricated through thixomolding process. J. Alloys Compd. 940, 168824 (2023).
Google Scholar
Chen, L. et al. Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mater. Sci. Eng.: A 804, 140793. https://doi.org/10.1016/j.msea.2021.140793 (2021).
Google Scholar
Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett 8(10), 3498–3502. https://doi.org/10.1021/nl802558y (2008).
Google Scholar
Khan, M., Shakeel, M., Khan, K., Akbar, S., & Khan, A. A Review on Fiber-Reinforced Foam Concrete. In ICEC 2022, Basel Switzerland: MDPI, p. 13. https://doi.org/10.3390/engproc2022022013 (2022).
Anas, M., Khan, M., Bilal, H., Jadoon, S., & Khan, M. N. Fiber Reinforced Concrete: A Review. In ICEC 2022, Basel Switzerland: MDPI, p. 3. https://doi.org/10.3390/engproc2022022003 (2022).
Wang, B. & Pang, B. Mechanical property and toughening mechanism of water reducing agents modified graphene nanoplatelets reinforced cement composites. Constr. Build. Mater. 226, 699–711. https://doi.org/10.1016/j.conbuildmat.2019.07.229 (2019).
Google Scholar
Du, H. & Pang, S. D. Enhancement of barrier properties of cement mortar with graphene nanoplatelet. Cem. Concr. Res. 76, 10–19. https://doi.org/10.1016/j.cemconres.2015.05.007 (2015).
Google Scholar
Peyvandi, A., Soroushian, P., Balachandra, A. M. & Sobolev, K. Enhancement of the durability characteristics of concrete nanocomposite pipes with modified graphite nanoplatelets. Constr. Build. Mater. 47, 111–117. https://doi.org/10.1016/j.conbuildmat.2013.05.002 (2013).
Google Scholar
Pang, S. D., Gao, H. J., Xu, C., Quek, S. T., & Du, H. Strain and damage self-sensing cement composites with conductive graphene nanoplatelet. In J. P. Lynch, K.-W. Wang, and H. Sohn, Eds., p. 906126. https://doi.org/10.1117/12.2045329 (2014).
Le, J.-L., Du, H. & Pang, S. D. Use of 2D Graphene Nanoplatelets (GNP) in cement composites for structural health evaluation. Compos. B Eng. 67, 555–563. https://doi.org/10.1016/j.compositesb.2014.08.005 (2014).
Google Scholar
Cui, X. et al. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites. Compos. Part A Appl. Sci. Manuf. 93, 49–58. https://doi.org/10.1016/j.compositesa.2016.11.017 (2017).
Google Scholar
Prabavathy, S., Jeyasubramanian, K., Prasanth, S., Hikku, G. S. & Robert, R. B. J. Enhancement in behavioral properties of cement mortar cubes admixed with reduced graphene oxide. J. Build. Eng. 28, 101082. https://doi.org/10.1016/j.jobe.2019.101082 (2020).
Google Scholar
Luong, D. X. et al. Gram-scale bottom-up flash graphene synthesis. Nature 577(7792), 647–651. https://doi.org/10.1038/s41586-020-1938-0 (2020).
Google Scholar
Li, M. et al. Microstructure and properties of graphene nanoplatelets reinforced AZ91D matrix composites prepared by electromagnetic stirring casting. J. Mater. Res. Technol. 21, 4138–4150 (2022).
Google Scholar
Yao, X. et al. AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition. Constr. Build. Mater. 375, 130898. https://doi.org/10.1016/j.conbuildmat.2023.130898 (2023).
Google Scholar
Wang, B. & Shuang, D. Effect of graphene nanoplatelets on the properties, pore structure and microstructure of cement composites. Materials Express 8(5), 407–416. https://doi.org/10.1166/mex.2018.1447 (2018).
Google Scholar
Wang, X., Li, L., Xiang, Y., Wu, Y. & Wei, M. The influence of basalt fiber on the mechanical performance of concrete-filled steel tube short columns under axial compression. Front. Mater. https://doi.org/10.3389/fmats.2023.1332269 (2024).
Google Scholar
Wang, B., Jiang, R. & Wu, Z. Investigation of the mechanical properties and microstructure of graphene nanoplatelet-cement composite. Nanomaterials 6(11), 200. https://doi.org/10.3390/nano6110200 (2016).
Google Scholar
Liu, J., Fu, J., Yang, Y. & Gu, C. Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets. Constr. Build. Mater. 199, 1–11. https://doi.org/10.1016/j.conbuildmat.2018.12.006 (2019).
Google Scholar
Meng, W. & Khayat, K. H. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Compos. B Eng. 107, 113–122. https://doi.org/10.1016/j.compositesb.2016.09.069 (2016).
Google Scholar
Matalkah, F. & Soroushian, P. Graphene nanoplatelet for enhancement the mechanical properties and durability characteristics of alkali activated binder. Constr. Build. Mater. 249, 118773. https://doi.org/10.1016/j.conbuildmat.2020.118773 (2020).
Google Scholar
Rocha, J. H. A., Toledo Filho, R. D. & Cayo-Chileno, N. G. Sustainable alternatives to CO2 reduction in the cement industry: A short review. Mater Today Proc 57, 436–439. https://doi.org/10.1016/j.matpr.2021.12.565 (2022).
Google Scholar
Murugan, M., Santhanam, M., Sen Gupta, S., Pradeep, T. & Shah, S. P. Influence of 2D rGO nanosheets on the properties of OPC paste. Cem. Concr. Compos. 70, 48–59. https://doi.org/10.1016/j.cemconcomp.2016.03.005 (2016).
Google Scholar
Adil Khan, M. K., Khan, M., Ali, S. Use of Marble Dust as a Filler Material in Flexible Pavements. In 4th International Conference on Sustainability in Civil Engineering, CUST, Islamabad, Pakistan, (2022).
Khan, K., Khan, I., Khan, M., Shakeel, M., & Khan, A. Mechanical and Physical Properties of Cellular Lightweight Concrete (CLC) Blocks. In Ist International Conference on Advances In Civil and Environmental Engineering, UET Taxila, Pakistan, 2022.
Junaid Khan Muhammad Shahab, M. S., Majid Khan, Investigation of Physical and Rheological Properties of Bitumen Modified with Bagasse Ash. In ICCRDM-2022. – Peshawar : UET Peshawar, 2022, ISBN: 969–23645–1–5,
Muhammad Shahab, M. R., Hamza Jamal, Majid Khan, Non-Linear charateristics of Asphalt Concrete under Repeated Cyclic Loading. In ICCRDM-2022. -Peshawar : UET Peshawar, 2022, ISBN: 969–23645–1–5,
Baloch, W. L., Khushnood, R. A. & Khaliq, W. Influence of multi-walled carbon nanotubes on the residual performance of concrete exposed to high temperatures. Constr. Build. Mater. 185, 44–56. https://doi.org/10.1016/j.conbuildmat.2018.07.051 (2018).
Google Scholar
Chen, L. et al. Development of predictive models for sustainable concrete via genetic programming-based algorithms. J. Mater. Res. Technol. https://doi.org/10.1016/j.jmrt.2023.04.180 (2023).
Google Scholar
Sun, L. et al. Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments. Adv. Struct. Eng. 26(3), 533–546. https://doi.org/10.1177/13694332221131153 (2022).
Google Scholar
Long, X., Mao, M., Su, T., Su, Y. & Tian, M. Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Defence Technol. 23, 100–111. https://doi.org/10.1016/j.dt.2022.02.003 (2023).
Google Scholar
Wei, Z., Shuaiwen, K., Benqing, L. & Yiqun, H. Mixed-mode debonding in CFRP-to-steel fiber-reinforced concrete joints. J. Compos. Constr. 28(1), 4023069. https://doi.org/10.1061/JCCOF2.CCENG-4337 (2024).
Google Scholar
Alyami, M. et al. Predictive modeling for compressive strength of 3D printed fiber-reinforced concrete using machine learning algorithms. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2023.e02728 (2023).
Google Scholar
Chen, C., Han, D. & Chang, C. C. MPCCT: Multimodal vision-language learning paradigm with context-based compact Transformer. Pattern Recognit. 147, 110084 (2024).
Google Scholar
Lee, S., Vo, T. P., Thai, H.-T., Lee, J. & Patel, V. Strength prediction of concrete-filled steel tubular columns using Categorical Gradient Boosting algorithm. Eng. Struct. 238, 112109. https://doi.org/10.1016/j.engstruct.2021.112109 (2021).
Google Scholar
Khan, M. et al. Forecasting the strength of graphene nanoparticles-reinforced cementitious composites using ensemble learning algorithms. Results Eng. 21, 101837. https://doi.org/10.1016/j.rineng.2024.101837 (2024).
Google Scholar
Alyami, M. et al. Estimating compressive strength of concrete containing rice husk ash using interpretable machine learning-based models. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2024.e02901 (2024).
Google Scholar
Chen, C., Han, D. & Shen, X. CLVIN: Complete language-vision interaction network for visual question answering. Knowledge-Based Syst. 275, 110706 (2023).
Google Scholar
Huang, H., Yuan, Y., Zhang, W. & Zhu, L. Property assessment of high-performance concrete containing three types of fibers. Int. J. Concr. Struct. Mater. 15(1), 39. https://doi.org/10.1186/s40069-021-00476-7 (2021).
Google Scholar
Kakasor, D. et al. Machine learning techniques and multi-scale models to evaluate the impact of silicon dioxide (SiO2) and calcium oxide (CaO) in fly ash on the compressive strength of green concrete. Constr. Build. Mater. 400, 132604. https://doi.org/10.1016/j.conbuildmat.2023.132604 (2023).
Google Scholar
Alyousef, R. et al. Machine learning-driven predictive models for compressive strength of steel fiber reinforced concrete subjected to high temperatures. Case Stud. Constr. Mater. 19, e02418. https://doi.org/10.1016/j.cscm.2023.e02418 (2023).
Google Scholar
Li, H., Yang, Y., Wang, X. & Tang, H. Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete. Structures 58, 105500. https://doi.org/10.1016/j.istruc.2023.105500 (2023).
Google Scholar
Khan, M. et al. Optimizing durability assessment: Machine learning models for depth of wear of environmentally-friendly concrete. Results Eng. https://doi.org/10.1016/j.rineng.2023.101625 (2023).
Google Scholar
Shi, S., Han, D. & Cui, M. A multimodal hybrid parallel network intrusion detection model. Connect. Sci. https://doi.org/10.1080/09540091.2023.2227780 (2023).
Google Scholar
Cao, J. et al. Crack detection in ultrahigh-performance concrete using robust principal component analysis and characteristic evaluation in the frequency domain. Struct. Health Monit. https://doi.org/10.1177/14759217231178457 (2023).
Google Scholar
Alyami, M. et al. Application of metaheuristic optimization algorithms in predicting the compressive strength of 3D-printed fiber-reinforced concrete. Dev. Built Environ. https://doi.org/10.1016/j.dibe.2023.100307 (2023).
Google Scholar
Wang, H., Han, D., Cui, M. & Chen, C. NAS-YOLOX: A SAR ship detection using neural architecture search and multi-scale attention. Conn. Sci. 35, 1–32 (2023).
Google Scholar
Han, D. et al. LMCA: A lightweight anomaly network traffic detection model integrating adjusted mobilenet and coordinate attention mechanism for IoT. Telecommun. Syst. 84, 549–564 (2023).
Google Scholar
Chen, L. et al. Development of predictive models for sustainable concrete via genetic programming-based algorithms. J. Mater. Res. Technol. 24, 6391–6410. https://doi.org/10.1016/j.jmrt.2023.04.180 (2023).
Google Scholar
Biswas, R. et al. Development of hybrid models using metaheuristic optimization techniques to predict the carbonation depth of fly ash concrete. Constr. Build. Mater. 346, 128483. https://doi.org/10.1016/j.conbuildmat.2022.128483 (2022).
Google Scholar
Dou, J. et al. Surface activity, wetting, and aggregation of a perfluoropolyether quaternary ammonium salt surfactant with a hydroxyethyl group. Molecules 28, 7151 (2023).
Google Scholar
Chen, X. et al. Output voltage drop and input current ripple suppression for the pulse load power supply using virtual multiple quasi-notch-filters impedance. IEEE Trans. Power Electron. 38, 9552–9565 (2023).
Google Scholar
Wu, Y. & Huang, H. predicting compressive and flexural strength of high-performance concrete using a dynamic catboost regression model combined with individual and ensemble optimization techniques. Mater. Today Commun. https://doi.org/10.1016/j.mtcomm.2024.108174 (2024).
Google Scholar
Fei, R., Guo, Y., Li, J., Hu, B. & Yang, L. An Improved BPNN Method Based on Probability Density for Indoor Location. IEICE Trans. Inf. Syst. E106.D, 773–785 (2023).
Montazerian, A., Baghban, M. H., Ramachandra, R. & Goutianos, S. A machine learning approach for assessing the compressive strength of cementitious composites reinforced by graphene derivatives. Constr. Build. Mater. 409, 134014. https://doi.org/10.1016/J.CONBUILDMAT.2023.134014 (2023).
Google Scholar
Sun, J. et al. Machine learning-aided design and prediction of cementitious composites containing graphite and slag powder. J. Build. Eng. 43, 102544. https://doi.org/10.1016/J.JOBE.2021.102544 (2021).
Google Scholar
Yang, J. et al. Comparison of traditional and automated machine learning approaches in predicting the compressive strength of graphene oxide/cement composites. Constr. Build. Mater. 394, 132179. https://doi.org/10.1016/j.conbuildmat.2023.132179 (2023).
Google Scholar
Zhao, Y. et al. Intelligent control of multilegged robot smooth motion: A review. IEEE Access 11, 86645–86685 (2023).
Google Scholar
Meng, S., Meng, F., Chi, H., Chen, H. & Pang, A. A robust observer based on the nonlinear descriptor systems application to estimate the state of charge of lithium-ion batteries. J. Franklin Inst. 360, 11397–11413 (2023).
Google Scholar
Zhao, Y. et al. Study of mechanical properties and early-stage deformation properties of graphene-modified cement-based materials. Constr. Build. Mater. 257, 119498. https://doi.org/10.1016/j.conbuildmat.2020.119498 (2020).
Google Scholar
Lv, S., Ting, S., Liu, J. & Zhou, Q. Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness. CrystEngComm 16(36), 8508. https://doi.org/10.1039/C4CE00684D (2014).
Google Scholar
Gong, K. et al. Reinforcing effects of graphene oxide on portland cement paste. J. Mater. Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001125 (2015).
Google Scholar
Baomin, W. & Shuang, D. Effect and mechanism of graphene nanoplatelets on hydration reaction, mechanical properties and microstructure of cement composites. Constr. Build. Mater. 228, 116720. https://doi.org/10.1016/j.conbuildmat.2019.116720 (2019).
Google Scholar
Zhang, N., She, W., Du, F. & Xu, K. Experimental study on mechanical and functional properties of reduced graphene oxide/cement composites. Materials 13(13), 3015. https://doi.org/10.3390/ma13133015 (2020).
Google Scholar
Tong, T. et al. Investigation of the effects of graphene and graphene oxide nanoplatelets on the micro- and macro-properties of cementitious materials. Constr. Build. Mater. 106, 102–114. https://doi.org/10.1016/j.conbuildmat.2015.12.092 (2016).
Google Scholar
Sun, H., Ling, L., Ren, Z., Memon, S. A. & Xing, F. Effect of graphene oxide/graphene hybrid on mechanical properties of cement mortar and mechanism investigation. Nanomaterials 10(1), 113. https://doi.org/10.3390/nano10010113 (2020).
Google Scholar
Yang, H., Monasterio, M., Cui, H. & Han, N. Experimental study of the effects of graphene oxide on microstructure and properties of cement paste composite. Compos. Part A Appl. Sci. Manuf. 102, 263–272. https://doi.org/10.1016/j.compositesa.2017.07.022 (2017).
Google Scholar
Lv, S. et al. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022 (2013).
Google Scholar
Metaxa, Z. S. Exfoliated graphene nanoplatelet cement-based nanocomposites as piezoresistive sensors: Influence of nanoreinforcement lateral size on monitoring capability. Ciência & Tecnologia dos Materiais 28(1), 73–79. https://doi.org/10.1016/j.ctmat.2015.12.001 (2016).
Google Scholar
Liu, Q., Xu, Q., Yu, Q., Gao, R. & Tong, T. Experimental investigation on mechanical and piezoresistive properties of cementitious materials containing graphene and graphene oxide nanoplatelets. Constr. Build. Mater. 127, 565–576. https://doi.org/10.1016/j.conbuildmat.2016.10.024 (2016).
Google Scholar
Jiang, Z., Ozbulut, O. E., & Harris, D. K. Graphene Nanoplatelets-Based Self-Sensing Cementitious Composites. In Volume 1: Multifunctional Materials; Mechanics and Behavior of Active Materials; Integrated System Design and Implementation; Structural Health Monitoring, American Society of Mechanical Engineers, https://doi.org/10.1115/SMASIS2016-9188 (2016).
Cao, M., Zhang, H. & Zhang, C. Effect of graphene on mechanical properties of cement mortars. J. Cent. South Univ. 23(4), 919–925. https://doi.org/10.1007/s11771-016-3139-4 (2016).
Google Scholar
Wang, Y., Yang, J. & Ouyang, D. Effect of graphene oxide on mechanical properties of cement mortar and its strengthening mechanism. Materials 12(22), 3753. https://doi.org/10.3390/ma12223753 (2019).
Google Scholar
Sun, S. et al. Nano graphite platelets-enabled piezoresistive cementitious composites for structural health monitoring. Constr. Build. Mater. 136, 314–328. https://doi.org/10.1016/j.conbuildmat.2017.01.006 (2017).
Google Scholar
Lv, S., Liu, J., Sun, T., Ma, Y. & Zhou, Q. Effect of GO nanosheets on shapes of cement hydration crystals and their formation process. Constr. Build. Mater. 64, 231–239. https://doi.org/10.1016/j.conbuildmat.2014.04.061 (2014).
Google Scholar
Bai, S. et al. Research on electrical conductivity of graphene/cement composites. Adv. Cem. Res. 32(2), 45–52. https://doi.org/10.1680/jadcr.16.00170 (2020).
Google Scholar
Sharma, S. & Kothiyal, N. C. Comparative effects of pristine and ball-milled graphene oxide on physico-chemical characteristics of cement mortar nanocomposites. Constr. Build. Mater. 115, 256–268. https://doi.org/10.1016/j.conbuildmat.2016.04.019 (2016).
Google Scholar
Zhai, S. et al. Investigation on preparation and multifunctionality of reduced graphene oxide cement mortar. Constr. Build. Mater. 275, 122119. https://doi.org/10.1016/j.conbuildmat.2020.122119 (2021).
Google Scholar
Papanikolaou, I., Arena, N. & Al-Tabbaa, A. Graphene nanoplatelet reinforced concrete for self-sensing structures – A lifecycle assessment perspective. J. Clean. Prod. 240, 118202. https://doi.org/10.1016/j.jclepro.2019.118202 (2019).
Google Scholar
Ghazizadeh, S., Duffour, P., Skipper, N. T. & Bai, Y. Understanding the behaviour of graphene oxide in Portland cement paste. Cem. Concr. Res. 111, 169–182. https://doi.org/10.1016/j.cemconres.2018.05.016 (2018).
Google Scholar
Wang, Q. et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement. New Carbon Mater. 30(4), 349–356. https://doi.org/10.1016/S1872-5805(15)60194-9 (2015).
Google Scholar
Liu, J., Li, Q. & Shilang, X. Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J. Mater. Civil Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002649 (2019).
Google Scholar
Dalla, P. T. et al. Multifunctional cement mortars enhanced with graphene nanoplatelets and carbon nanotubes. Sensors 21(3), 933. https://doi.org/10.3390/s21030933 (2021).
Google Scholar
Farooq, F. et al. Experimental investigation of hybrid carbon nanotubes and graphite nanoplatelets on rheology, shrinkage, mechanical, and microstructure of SCCM. Materials 13(1), 230. https://doi.org/10.3390/ma13010230 (2020).
Google Scholar
Dong, W., Huang, Y., Lehane, B. & Ma, G. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health monitoring. Autom. Constr. 114, 103155. https://doi.org/10.1016/j.autcon.2020.103155 (2020).
Google Scholar
ASTM C39/C39M-14, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA., (2014).
Chen, D. L., Zhao, J. W. & Qin, S. R. SVM strategy and analysis of a three-phase quasi-Z-source inverter with high voltage transmission ratio. Sci. China Technol. Sci. 66, 2996–3010 (2023).
Google Scholar
Alabduljabbar, H. et al. Forecasting compressive strength and electrical resistivity of graphite based nano-composites using novel artificial intelligence techniques. Case Stud. Constr. Mater. 18, e01848. https://doi.org/10.1016/j.cscm.2023.e01848 (2023).
Google Scholar
Khan, M. et al. Intelligent prediction modeling for flexural capacity of FRP-strengthened reinforced concrete beams using machine learning algorithms. Heliyon https://doi.org/10.1016/j.heliyon.2023.e23375 (2023).
Google Scholar
Khan, A. et al. Predictive modeling for depth of wear of concrete modified with fly ash: A comparative analysis of genetic programming-based algorithms. Case Stud. Constr. Mater. https://doi.org/10.1016/j.cscm.2023.e02744 (2023).
Google Scholar
Zhang, J., Huang, Y., Ma, G. & Nener, B. Mixture optimization for environmental, economical and mechanical objectives in silica fume concrete: A novel frame-work based on machine learning and a new meta-heuristic algorithm. Resour. Conserv. Recycl. 167, 105395. https://doi.org/10.1016/j.resconrec.2021.105395 (2021).
Google Scholar
Tang, H. et al. Rational design of high-performance epoxy/expandable microsphere foam with outstanding mechanical, thermal, and dielectric properties. J. Appl. Polym. Sci. https://doi.org/10.1002/app.55502 (2024).
Google Scholar
Alabduljabbar, H. et al. Predicting ultra-high-performance concrete compressive strength using gene expression programming method. Case Stud. Constr. Mater. 18, e02074. https://doi.org/10.1016/j.cscm.2023.e02074 (2023).
Google Scholar
Khan, M. & Javed, M. F. Towards sustainable construction: Machine learning based predictive models for strength and durability characteristics of blended cement concrete. Mater Today Commun 37, 107428. https://doi.org/10.1016/j.mtcomm.2023.107428 (2023).
Google Scholar
Chen, G., Tang, W., Chen, S., Wang, S. & Cui, H. Prediction of self-healing of engineered cementitious composite using machine learning approaches. Appl. Sci. 12(7), 3605. https://doi.org/10.3390/app12073605 (2022).
Google Scholar
Naderpour, H., Rafiean, A. H. & Fakharian, P. Compressive strength prediction of environmentally friendly concrete using artificial neural networks. J. Build. Eng. 16, 213–219. https://doi.org/10.1016/j.jobe.2018.01.007 (2018).
Google Scholar
Chauhan, H., Jang, Y., Pradhan, S. & Moon, H. Personalized optimal room temperature and illuminance for maximizing occupant’s mental task performance using physiological data. J. Build. Eng. 78, 107757. https://doi.org/10.1016/j.jobe.2023.107757 (2023).
Google Scholar
Jang, Y. et al. Multi-camera-based human activity recognition for human–robot collaboration in construction. Sensors 23(15), 6997. https://doi.org/10.3390/s23156997 (2023).
Google Scholar
Amin, M. N., Javed, M. F., Khan, K., Shalabi, F. I. & Qadir, M. G. Modeling compressive strength of eco-friendly volcanic ash mortar using artificial neural networking. Symmetry (Basel) 13(11), 2009. https://doi.org/10.3390/sym13112009 (2021).
Google Scholar
Farooq, F. et al. A comparative study of random forest and genetic engineering programming for the prediction of compressive strength of high strength concrete (HSC). Appl. Sci. 10(20), 7330. https://doi.org/10.3390/app10207330 (2020).
Google Scholar
Nazar, S. et al. Development of the new prediction models for the compressive strength of nanomodified concrete using novel machine learning techniques. Buildings 12(12), 2160. https://doi.org/10.3390/buildings12122160 (2022).
Google Scholar
Zhou, J. et al. Decision tree models for the estimation of geo-polymer concrete compressive strength. Math. Biosci. Eng. 21(1), 1413–1444. https://doi.org/10.3934/mbe.2024061 (2023).
Google Scholar
Ma, H., Liu, J., Zhang, J. & Huang, J. Estimating the compressive strength of cement-based materials with mining waste using support vector machine, decision tree, and random forest models. Adv. Civil Eng. 2021, 1–10. https://doi.org/10.1155/2021/6629466 (2021).
Google Scholar
Tangirala, S. Evaluating the impact of GINI index and information gain on classification using decision tree classifier algorithm. Int. J. Adv. Comput. Sci. Appl. https://doi.org/10.14569/IJACSA.2020.0110277 (2020).
Google Scholar
Alabdullah, A. A. et al. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis. Constr. Build. Mater. 345, 128296. https://doi.org/10.1016/j.conbuildmat.2022.128296 (2022).
Google Scholar
Althoey, F. et al. Machine learning based computational approach for crack width detection of self-healing concrete. Case Stud. Constr. Mater. 17, e01610. https://doi.org/10.1016/j.cscm.2022.e01610 (2022).
Google Scholar
Amin, M. N. et al. Investigating the bond strength of FRP laminates with concrete using LIGHT GBM and SHAPASH analysis. Polymers (Basel) 14(21), 4717. https://doi.org/10.3390/polym14214717 (2022).
Google Scholar
Iqbal, M., Zhang, D., Khan, M. I., Zahid, M. & Jalal, F. E. Effects of Rebar size and volume fraction of glass fibers on tensile strength retention of GFRP Rebars in alkaline environment via RSM and SHAP analyses. J. Mater. Civil Eng. https://doi.org/10.1061/JMCEE7.MTENG-15589 (2023).
Google Scholar
Haijie He, E. et al. Deciphering size-induced influence of carbon dots on mechanical performance of cement composites. Constr. Build. Mater. 425, 136030. https://doi.org/10.1016/j.conbuildmat.2024.136030 (2024).
Google Scholar
Lu, S. F., Xue, N., Ma, W. S., Song, X. J. & Jiang, X. Linear and nonlinear dynamics responses of an axially moving laminated composite plate-reinforced with graphene nanoplatelets. Int. J. Struct. Stab. Dyn. https://doi.org/10.1142/S0219455425500361 (2024).
Google Scholar
Jang, J.-S.R. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685. https://doi.org/10.1109/21.256541 (1993).
Google Scholar
Abunama, T., Othman, F., Ansari, M. & El-Shafie, A. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill. Environ. Sci. Pollut. Res. 26(4), 3368–3381. https://doi.org/10.1007/s11356-018-3749-5 (2019).
Google Scholar
Golafshani, E. M., Behnood, A. & Arashpour, M. Predicting the compressive strength of normal and high-performance concretes using ANN and ANFIS hybridized with grey wolf optimizer. Constr. Build. Mater. 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266 (2020).
Google Scholar
Akan, R. & Keskin, S. N. The effect of data size of ANFIS and MLR models on prediction of unconfined compression strength of clayey soils. SN Appl. Sci. 1(8), 843. https://doi.org/10.1007/s42452-019-0883-8 (2019).
Google Scholar
Sadeghizadeh, A. et al. Adsorptive removal of Pb (II) by means of hydroxyapatite/chitosan nanocomposite hybrid nanoadsorbent: ANFIS modeling and experimental study. J. Environ. Manage 232, 342–353. https://doi.org/10.1016/j.jenvman.2018.11.047 (2019).
Google Scholar
Sada, S. O. & Ikpeseni, S. C. Evaluation of ANN and ANFIS modeling ability in the prediction of AISI 1050 steel machining performance. Heliyon 7(2), e06136. https://doi.org/10.1016/j.heliyon.2021.e06136 (2021).
Google Scholar
Imtiaz, L., Rehman, S. K. U., Memon, S. A., Khan, M. K. & Javed, M. F. A review of recent developments and advances in eco-friendly geopolymer concrete. Appl. Sci. 10(21), 7838. https://doi.org/10.3390/app10217838 (2020).
Google Scholar
Hossain, A., & Rahman, A. Sensor-Controlled Intelligent Vehicle Systems: Demand and Needs for a Global Automotive Landscape. In Comprehensive Materials Processing, Elsevier, pp. 473–497. https://doi.org/10.1016/B978-0-08-096532-1.01321-2 (2014).
Javed, M. F. et al. New prediction model for the ultimate axial capacity of concrete-filled steel tubes: An evolutionary approach. Crystals 10, 741 (2020).
Google Scholar
Nabavi-Pelesaraei, A., Rafiee, S., Hosseini-Fashami, F., & Chau, K. Artificial neural networks and adaptive neuro-fuzzy inference system in energy modeling of agricultural products. In Predictive Modelling for Energy Management and Power Systems Engineering, pp. 299–334, https://doi.org/10.1016/B978-0-12-817772-3.00011-2 (2021).
Alyousef, R. et al. Forecasting the strength characteristics of concrete incorporating waste foundry sand using advance machine algorithms including deep learning. Case Stud. Constr. Mater. 19, e02459. https://doi.org/10.1016/j.cscm.2023.e02459 (2023).
Google Scholar
Lundberg, S.M., & Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, (2017).
Lundberg, S. M., & Lee, S.-I. A unified approach to interpreting model predictions. In NeurIPS Proceedings, (2017).
Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2(1), 56–67. https://doi.org/10.1038/s42256-019-0138-9 (2020).
Google Scholar
Alabdullah, A. A., Zahid, M., Khan, K., Amin, M. N., & Jalal, F. E. Prediction of rapid chloride penetration resistance of metakaolin based high strength concrete using light GBM and XGBoost models by incorporating SHAP analysis, https://doi.org/10.1016/j.conbuildmat.2022.128296 (2022).
Khan, M. et al. Forecasting the strength of graphene nanoparticles-reinforced cementitious composites using ensemble learning algorithms. Res. Eng. 21, 101837. https://doi.org/10.1016/j.rineng.2024.101837 (2024).
Dong, W., Huang, Y., Lehane, B. & Ma, G. Multi-objective design optimization for graphite-based nanomaterials reinforced cementitious composites: a data-driven method with machine learning and NSGA-II. Constr. Build. Mater. 331, 127198 (2022).
Google Scholar
Karim, R., Islam, Md. H., Datta, S. D. & Kashem, A. Synergistic effects of supplementary cementitious materials and compressive strength prediction of concrete using machine learning algorithms with SHAP and PDP analyses. Case Stud. Constr. Mater. 20, e02828. https://doi.org/10.1016/J.CSCM.2023.E02828 (2024).
Google Scholar