Jung, J. et al. New parallel computing algorithm of molecular dynamics for extremely huge scale biological systems. J. Comput. Chem. 42, 231–241 (2021).
Google Scholar
Singh, V., Patra, S., Murugan, N. A., Toncu, D.-C. & Tiwari, A. Recent trends in computational tools and data-driven modeling for advanced materials. Mater. Adv. 3, 4069–4087 (2022).
Google Scholar
Vogiatzis, K. D. et al. Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem. Rev. 119, 2453–2523 (2019).
Google Scholar
Cembran, A., Bernardi, F., Olivucci, M. & Garavelli, M. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J. Am. Chem. Soc. 126, 16018–16037 (2004).
Google Scholar
Vermeeren, P. et al. Pericyclic reaction benchmarks: hierarchical computations targeting ccsdt(q)/cbs and analysis of dft performance. Phys. Chem. Chem. Phys. 24, 18028–18042 (2022).
Google Scholar
Martín Pendás, A. et al. Atoms in molecules in real space: a fertile field for chemical bonding. Phys. Chem. Chem. Phys. 25, 10231–10262 (2023).
Google Scholar
Coulson, C. A. Present state of molecular structure calculations. Rev. Mod. Phys. 32, 170–177 (1960).
Google Scholar
Popelier, P. L. A. On quantum chemical topology. In Challenges and Advances in Computational Chemistry and Physics, 23–52 (Switzerland, Springer International Publishing, 2016).
Jeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der waals complexes. Chem. Rev. 94, 1887–1930 (1994).
Google Scholar
Cohen, M. H. & Wasserman, A. On the foundations of chemical reactivity theory. J. Phys. Chem. A 111, 2229–2242 (2007).
Google Scholar
Elliott, P., Burke, K., Cohen, M. H. & Wasserman, A. Partition density-functional theory. Phys. Rev. A 82, 024501 (2010).
Google Scholar
Bader, R. Atoms in Molecules: A Quantum Theory. International Series of Monographs on Chemistry (Oxford University Press, Oxford, 1990).
Francisco, E., Martín Pendás, A. & Blanco, M. Edf: computing electron number probability distribution functions in real space from molecular wave functions. Comput. Phys. Commun. 178, 621–634 (2008).
Google Scholar
Blanco, M. A., Martín Pendás, A. & Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096–1109 (2005).
Google Scholar
Zhao, L., von Hopffgarten, M., Andrada, D. M. & Frenking, G. Energy decomposition analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, 1345 (2018).
Google Scholar
van Zeist, W.-J. & Bickelhaupt, F. M. The activation strain model of chemical reactivity. Org. Biomol. Chem. 8, 3118–3127 (2010).
Google Scholar
Guevara-Vela, J. M., Francisco, E., Rocha-Rinza, T. & Martín Pendás, A. Interacting quantum atoms—a review. Molecules 25, 4028 (2020).
Google Scholar
Jiménez-Grávalos, F., Díaz, N., Francisco, E., Pendás, Á. M. & Suárez, D. Interacting quantum atoms approach and electrostatic solvation energy: assessing atomic and group solvation contributions. ChemPhysChem 19, 3425–3435 (2018).
Google Scholar
López, R., Díaz, N., Francisco, E., Martín Pendás, A. & Suárez, D. QM/MM energy decomposition using the interacting quantum atoms approach. J. Chem. Inf. Model. 62, 1510–1524 (2022).
Google Scholar
Martín Pendás, A., Francisco, E. & Blanco, M. A. Two-electron integrations in the quantum theory of atoms in molecules with correlated wave functions. J. Comput. Chem. 26, 344–351 (2005).
Google Scholar
Rodríguez, J. I., Cortés-Guzmán, F. & Anderson, J. S. M. (eds.) Advances in Quantum Chemical Topology Beyond QTAIM (Elsevier—Health Sciences Division, Philadelphia, PA, 2022).
Baum, Z. J. et al. Artificial intelligence in chemistry: Current trends and future directions. J. Chem. Inf. Model. 61, 3197–3212 (2021).
Google Scholar
Sajjan, M. et al. Quantum machine learning for chemistry and physics. Chem. Soc. Rev. 51, 6475–6573 (2022).
Google Scholar
Keith, J. A. et al. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121, 9816–9872 (2021).
Google Scholar
Gasteiger, J. Chemistry in times of artificial intelligence. ChemPhysChem 21, 2233–2242 (2020).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
Google Scholar
Zielinski, F. et al. Geometry optimization with machine trained topological atoms. Sci. Rep. 7, 12817–12817 (2017).
Jussupow, A. & Kaila, V. R. I. Effective molecular dynamics from neural network-based structure prediction models. J. Chem. Theory Comput. 19, 1965–1975 (2023).
Google Scholar
Mills, A. W., Goings, J. J., Beck, D., Yang, C. & Li, X. Exploring potential energy surfaces using reinforcement machine learning. J. Chem. Inf. Model. 62, 3169–3179 (2022).
Google Scholar
Lu, F. et al. Fast near ab initio potential energy surfaces using machine learning. J. Phys. Chem. A 126, 4013–4024 (2022).
Google Scholar
Schienbein, P. Spectroscopy from machine learning by accurately representing the atomic polar tensor. J. Chem. Theory Comput. 19, 705–712 (2023).
Google Scholar
Ponting, D. J., van Deursen, R. & Ott, M. A. Machine learning predicts degree of aromaticity from structural fingerprints. J. Chem. Inf. Model. 60, 4560–4568 (2020).
Google Scholar
Acosta, C. M., Ogoshi, E., Souza, J. A. & Dalpian, G. M. Machine learning study of the magnetic ordering in 2d materials. ACS Appl. Mater. Interfaces. 14, 9418–9432 (2022).
Google Scholar
Malakar, P., Thakur, M. S. H., Nahid, S. M. & Islam, M. M. Data-driven machine learning to predict mechanical properties of monolayer transition-metal dichalcogenides for applications in flexible electronics. ACS Appl. Nano Mater. 5, 16489–16499 (2022).
Google Scholar
Lee, B. K. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 381, 999–1006 (2023).
Google Scholar
Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).
Google Scholar
Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Google Scholar
Symons, B. C. B., Bane, M. K. & Popelier, P. L. A. Dl_fflux: a parallel, quantum chemical topology force field. J. Chem. Theory Comput. 17, 7043–7055 (2021).
Google Scholar
McDonagh, J. L., Silva, A. F., Vincent, M. A. & Popelier, P. L. A. Machine learning of dynamic electron correlation energies from topological atoms. J. Chem. Theory Comput. 14, 216–224 (2018).
Google Scholar
Symons, B. C. B. & Popelier, P. L. A. Application of quantum chemical topology force field flux to condensed matter simulations: Liquid water. J. Chem. Theory Comput. 18, 5577–5588 (2022).
Google Scholar
Hawe, G. I. & Popelier, P. L. A water potential based on multipole moments trained by machine learning—reducing maximum energy errors. Can. J. Chem. 88, 1104–1111 (2010).
Google Scholar
Maxwell, P., di Pasquale, N., Cardamone, S. & Popelier, P. L. A. The prediction of topologically partitioned intra-atomic and inter-atomic energies by the machine learning method kriging. Theor. Chem. Acc. 135, 195 (2016).
Handley, C. M. & Popelier, P. L. A. Dynamically polarizable water potential based on multipole moments trained by machine learning. J. Chem. Theory Comput. 5, 1474–1489 (2009).
Google Scholar
Gallegos, M., Guevara-Vela, J. M. & Martín Pendás, A. NNAIMQ: a neural network model for predicting QTAIM charges. J. Chem. Phys. 156, 014112 (2022).
Google Scholar
Oviedo, F., Ferres, J. L., Buonassisi, T. & Butler, K. T. Interpretable and explainable machine learning for materials science and chemistry. Acc. Mater. Res. 3, 597–607 (2022).
Google Scholar
Faroughi, S. A. et al. Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing: fluid and solid mechanics. J. Comput. Inf. Sci. Eng. 24, 040802 (2024).
Jiménez-Luna, J., Skalic, M., Weskamp, N. & Schneider, G. Coloring molecules with explainable artificial intelligence for preclinical relevance assessment. J. Chem. Inf. Model. 61, 1083–1094 (2021).
Google Scholar
Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2021).
Google Scholar
Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 1–42 (2018).
Google Scholar
Schütt, K. et al. Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. In (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, vol. 30 (Curran Associates, Inc., 2017).
Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. Schnet—a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
Google Scholar
Schütt, K. T. et al. Schnetpack: a deep learning toolbox for atomistic systems. J. Chem. Theory Comput. 15, 448–455 (2019).
Google Scholar
Westermayr, J. & Maurer, R. J. Physically inspired deep learning of molecular excitations and photoemission spectra. Chem. Sci. 12, 10755–10764 (2021).
Google Scholar
Ward, L. et al. Machine learning prediction of accurate atomization energies of organic molecules from low-fidelity quantum chemical calculations. MRS Commun. 9, 891–899 (2019).
Google Scholar
Gao, P., Zhang, J., Sun, Y. & Yu, J. Accurate predictions of aqueous solubility of drug molecules via the multilevel graph convolutional network (MGCN) and SchNet architectures. Phys. Chem. Chem. Phys. 22, 23766–23772 (2020).
Google Scholar
Erlebach, A., Nachtigall, P. & Grajciar, L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. Npj Comput. Mater. 8, 1–12 (2022).
Google Scholar
Zhang, J., Chen, J., Hu, P. & Wang, H. Identifying the composition and atomic distribution of pt-au bimetallic nanoparticle with machine learning and genetic algorithm. Chin. Chem. Lett. 31, 890–896 (2020).
Google Scholar
Westermayr, J., Gastegger, M. & Marquetand, P. Combining SchNet and SHARC: the SchNarc machine learning approach for excited-state dynamics. J. Phys. Chem. Lett. 11, 3828–3834 (2020).
Google Scholar
Timm, M. J., Matta, C. F., Massa, L. & Huang, L. The localization–delocalization matrix and the electron-density-weighted connectivity matrix of a finite graphene nanoribbon reconstructed from kernel fragments. J. Phys. Chem. A 118, 11304–11316 (2014).
Google Scholar
Sumar, I., Ayers, P. W., Cook, R. & Matta, C. F. Aromaticity of rings-in-molecules (rims) from electron localization–delocalization matrices (ldms)*. Phys. Scr. 91, 013001 (2015).
Google Scholar
Sumar, I., Ayers, P. W. & Matta, C. F. Electron localization-delocalization matrices in the prediction of pka’s and uv-wavelengths of maximum absorbance of p-benzoic acids and the definition of super-atoms in molecules. Chem. Phys. Lett. 612, 190–197 (2014).
Google Scholar
Rafat, M., Shaik, M. & Popelier, P. L. A. Transferability of quantum topological atoms in terms of electrostatic interaction energy. J. Phys. Chem. A 110, 13578–13583 (2006).
Google Scholar
Silva, A. F., Vincent, M. A., McDonagh, J. L. & Popelier, P. L. A. The transferability of topologically partitioned electron correlation energies in water clusters. ChemPhysChem 18, 3360–3368 (2017).
Google Scholar
Lefrancois-Gagnon, K. M. & Mawhinney, R. C. Toward universal substituent constants: transferability of group descriptors from the quantum theory of atoms in molecules. J. Comput. Chem. 43, 265–278 (2022).
Google Scholar
Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Transferable ab initio intermolecular potentials. 2. Validation and application to crystal structure prediction. J. Phys. Chem. A 103, 9883–9890 (1999).
Google Scholar
Grabowsky, S. et al. Transferability and reproducibility in electron-density studies bond-topological and atomic properties of tripeptides of the type l-alanyl-x-l-alanine. Acta. Crystallogr. B. Struct. Sci. Cryst. 65, 488–501 (2009).
Google Scholar
Maxwell, P. & Popelier, P. L. Transferable atoms: an intra-atomic perspective through the study of homogeneous oligopeptides. Mol. Phys. 114, 1304–1316 (2015).
Google Scholar
Ferro-Costas, D., Francisco, E., Martín Pendás, A. & Mosquera, R. A. How electronic excitation can be used to inhibit some mechanisms associated to substituent effects. ChemPhysChem 17, 2666–2671 (2016).
Google Scholar
Vila, A. & Mosquera, R. A. Transferability in alkyl monoethers. II. Methyl and methylene fragments. J. Chem. Phys. 115, 1264–1273 (2001).
Google Scholar
Rykounov, A. A. & Tsirelson, V. G. Quantitative estimates of transferability of the QTAIM descriptors. case study of the substituted hydropyrimidines. J. Mol. Struct. 906, 11–24 (2009).
Google Scholar
Yuan, Y., Mills, M. J. L., Popelier, P. L. A. & Jensen, F. Comprehensive analysis of energy minima of the 20 natural amino acids. J. Phys. Chem. A 118, 7876–7891 (2014).
Google Scholar
Hymel, J. H., Townsend, J. & Vogiatzis, K. D. Co2 capture on functionalized calixarenes: a computational study. J. Phys. Chem. A 123, 10116–10122 (2019).
Google Scholar
Sansone, F., Baldini, L., Casnati, A. & Ungaro, R. Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J. Chem. 34, 2715–2728 (2010).
Google Scholar
Blazejczyk, A. et al. Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes. Chem. Mater. 17, 1535–1547 (2005).
Google Scholar
Kumar, R. et al. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 119, 9657–9721 (2019).
Google Scholar
Español, E. & Villamil, M. Calixarenes: generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules 9, 90 (2019).
Google Scholar
Zhou, Y., Li, H. & Yang, Y.-W. Controlled drug delivery systems based on calixarenes. Chin. Chem. Lett. 26, 825–828 (2015).
Google Scholar
Sreedevi, P. et al. Calix[4]arene based redox sensitive molecular probe for SERS guided recognition of labile iron pool in tumor cells. Anal. Chem. 90, 7148–7153 (2018).
Google Scholar
Durmaz, M., Halay, E. & Bozkurt, S. Recent applications of chiral calixarenes in asymmetric catalysis. Beilstein J. Org. Chem. 14, 1389–1412 (2018).
Google Scholar
Guo, D.-S., Uzunova, V. D., Su, X., Liu, Y. & Nau, W. M. Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem. Sci. 2, 1722–1734 (2011).
Google Scholar
Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).
Google Scholar
Davis, F., Higson, S. P. J., Oliveira, O. N. & Shimizu, F. M. Calixarene-based gas sensors. In Materials Horizons: From Nature to Nanomaterials, 433–462 (Springer Singapore, 2020).
Filenko, D. et al. Chemical gas sensors based on calixarene-coated discontinuous gold films. Sens. Actuators B 111, 264–270 (2005).
Google Scholar
Kumar, S., Chawla, S. & Zou, M. C. Calixarenes based materials for gas sensing applications: a review. J. Incl. Phenom. Macrocycl. Chem. 88, 129–158 (2017).
Google Scholar
Cram, D. J., Tanner, M. E. & Knobler, C. B. Host-guest complexation. 58. Guest release and capture by hemicarcerands introduces the phenomenon of constrictive binding. J. Am. Chem. Soc. 113, 7717–7727 (1991).
Google Scholar
Yao, C.-Y. & de Silva, A. P. Recent developments in CO2 capture/storage/utilization with aromatic macrocycles. Carbon Capture Sci. Technol. 4, 100058 (2022).
Google Scholar
Taghizadeh, F., Mokhtarani, B., Zadmard, R. & Jalali, M. R. Highly selective CO2 uptake in calix[4]arene compounds immobilized on silica gel. Chem. Eng. J. 417, 128115 (2021).
Google Scholar
Shi, J.-W. et al. Calixarene-functionalized stable bismuth oxygen clusters for specific CO2-to-hcooh electroreduction. ACS Catal. 12, 14436–14444 (2022).
Google Scholar
Tsue, H. et al. Crystallographic analysis of CO2 sorption state in seemingly nonporous molecular crystal of azacalix[4]arene tetramethyl ether exhibiting highly selective co2 uptake. CrystEngComm 14, 1021–1026 (2012).
Google Scholar
Wu, W. et al. Design of calix-based cages for CO2 capture. Ind. Eng. Chem. Res. 56, 4502–4507 (2017).
Google Scholar
Baldini, L. et al. CO2 capture by multivalent amino-functionalized calix[4]arenes: self-assembly, absorption, and qcm detection studies. J. Org. Chem. 76, 3720–3732 (2011).
Google Scholar
Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957).
Google Scholar
Pembere, A. M. S., Liu, X., Ding, W. & Luo, Z. How partial atomic charges and bonding orbitals affect the reactivity of aluminum clusters with water? J. Phys. Chem. A 122, 3107–3114 (2018).
Google Scholar
Iwaoka, M., Komatsu, H., Katsuda, T. & Tomoda, S. Nature of nonbonded se-o interactions characterized by 17O NMR spectroscopy and NBO and AIM analyses. J. Am. Chem. Soc. 126, 5309–5317 (2004).
Google Scholar
Geidl, S. et al. High-quality and universal empirical atomic charges for chemoinformatics applications. J. Cheminform. 7, 59 (2015).
Google Scholar
Outeiral, C., Vincent, M. A., Martín Pendás, A. & Popelier, P. L. A. Revitalizing the concept of bond order through delocalization measures in real space. Chem. Sci. 9, 5517–5529 (2018).
Google Scholar
Wiberg, K. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968).
Google Scholar
Mayer, I. Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).
Google Scholar
Francisco, E., Martín Pendás, A., García-Revilla, M. & Boto, R. Á. A hierarchy of chemical bonding indices in real space from reduced density matrices and cumulants. Comput. Theor. Chem. 1003, 71–78 (2013).
Google Scholar
Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A. D. & Gadre, S. R. Structure and stability of water clusters (h2o)n, n = 8-20: An ab initio investigation. J. Phys. Chem. A 105, 10525–10537 (2001).
Google Scholar
Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The orca quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).
Google Scholar
Jmol: an open-source java viewer for chemical structures in 3d. http://www.jmol.org/.
Miguel Gallegos. Schnet4aim-data, mendeley data, v1. https://doi.org/10.17632/8f9g79pcvj.1, https://data.mendeley.com/datasets/8f9g79pcvj/1 (2024).
Gallegos, M. Explainable chemical artificial intelligence: Accurate machine learning of real-space chemical descriptors. https://github.com/m-gallegos/SchNet4AIM (2024). SchNet4AIM. https://doi.org/10.5281/zenodo.10802320.
Frisch, M. J. et al. Gaussian 09 Revision E.01. (Gaussian Inc., Wallingford CT, 2009).
Martín Pendás, A. & Francisco, E. Promolden. a qtaim/iqa code (avaliable from the authors upon request).
Keith, T. A. Aimall, tk gristmill software, overland park, KS, USA (2019).