Explainable chemical artificial intelligence from accurate machine learning of real-space chemical descriptors

Machine Learning


  • Jung, J. et al. New parallel computing algorithm of molecular dynamics for extremely huge scale biological systems. J. Comput. Chem. 42, 231–241 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singh, V., Patra, S., Murugan, N. A., Toncu, D.-C. & Tiwari, A. Recent trends in computational tools and data-driven modeling for advanced materials. Mater. Adv. 3, 4069–4087 (2022).

    Article 

    Google Scholar 

  • Vogiatzis, K. D. et al. Computational approach to molecular catalysis by 3d transition metals: challenges and opportunities. Chem. Rev. 119, 2453–2523 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cembran, A., Bernardi, F., Olivucci, M. & Garavelli, M. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J. Am. Chem. Soc. 126, 16018–16037 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vermeeren, P. et al. Pericyclic reaction benchmarks: hierarchical computations targeting ccsdt(q)/cbs and analysis of dft performance. Phys. Chem. Chem. Phys. 24, 18028–18042 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martín Pendás, A. et al. Atoms in molecules in real space: a fertile field for chemical bonding. Phys. Chem. Chem. Phys. 25, 10231–10262 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Coulson, C. A. Present state of molecular structure calculations. Rev. Mod. Phys. 32, 170–177 (1960).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Popelier, P. L. A. On quantum chemical topology. In Challenges and Advances in Computational Chemistry and Physics, 23–52 (Switzerland, Springer International Publishing, 2016).

  • Jeziorski, B., Moszynski, R. & Szalewicz, K. Perturbation theory approach to intermolecular potential energy surfaces of van der waals complexes. Chem. Rev. 94, 1887–1930 (1994).

    Article 
    CAS 

    Google Scholar 

  • Cohen, M. H. & Wasserman, A. On the foundations of chemical reactivity theory. J. Phys. Chem. A 111, 2229–2242 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elliott, P., Burke, K., Cohen, M. H. & Wasserman, A. Partition density-functional theory. Phys. Rev. A 82, 024501 (2010).

    Article 
    ADS 

    Google Scholar 

  • Bader, R. Atoms in Molecules: A Quantum Theory. International Series of Monographs on Chemistry (Oxford University Press, Oxford, 1990).

  • Francisco, E., Martín Pendás, A. & Blanco, M. Edf: computing electron number probability distribution functions in real space from molecular wave functions. Comput. Phys. Commun. 178, 621–634 (2008).

    Article 
    ADS 
    MathSciNet 
    CAS 

    Google Scholar 

  • Blanco, M. A., Martín Pendás, A. & Francisco, E. Interacting quantum atoms: a correlated energy decomposition scheme based on the quantum theory of atoms in molecules. J. Chem. Theory Comput. 1, 1096–1109 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, L., von Hopffgarten, M., Andrada, D. M. & Frenking, G. Energy decomposition analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, 1345 (2018).

    Article 

    Google Scholar 

  • van Zeist, W.-J. & Bickelhaupt, F. M. The activation strain model of chemical reactivity. Org. Biomol. Chem. 8, 3118–3127 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Guevara-Vela, J. M., Francisco, E., Rocha-Rinza, T. & Martín Pendás, A. Interacting quantum atoms—a review. Molecules 25, 4028 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiménez-Grávalos, F., Díaz, N., Francisco, E., Pendás, Á. M. & Suárez, D. Interacting quantum atoms approach and electrostatic solvation energy: assessing atomic and group solvation contributions. ChemPhysChem 19, 3425–3435 (2018).

    Article 
    PubMed 

    Google Scholar 

  • López, R., Díaz, N., Francisco, E., Martín Pendás, A. & Suárez, D. QM/MM energy decomposition using the interacting quantum atoms approach. J. Chem. Inf. Model. 62, 1510–1524 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martín Pendás, A., Francisco, E. & Blanco, M. A. Two-electron integrations in the quantum theory of atoms in molecules with correlated wave functions. J. Comput. Chem. 26, 344–351 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Rodríguez, J. I., Cortés-Guzmán, F. & Anderson, J. S. M. (eds.) Advances in Quantum Chemical Topology Beyond QTAIM (Elsevier—Health Sciences Division, Philadelphia, PA, 2022).

  • Baum, Z. J. et al. Artificial intelligence in chemistry: Current trends and future directions. J. Chem. Inf. Model. 61, 3197–3212 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sajjan, M. et al. Quantum machine learning for chemistry and physics. Chem. Soc. Rev. 51, 6475–6573 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keith, J. A. et al. Combining machine learning and computational chemistry for predictive insights into chemical systems. Chem. Rev. 121, 9816–9872 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gasteiger, J. Chemistry in times of artificial intelligence. ChemPhysChem 21, 2233–2242 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zielinski, F. et al. Geometry optimization with machine trained topological atoms. Sci. Rep. 7, 12817–12817 (2017).

  • Jussupow, A. & Kaila, V. R. I. Effective molecular dynamics from neural network-based structure prediction models. J. Chem. Theory Comput. 19, 1965–1975 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mills, A. W., Goings, J. J., Beck, D., Yang, C. & Li, X. Exploring potential energy surfaces using reinforcement machine learning. J. Chem. Inf. Model. 62, 3169–3179 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, F. et al. Fast near ab initio potential energy surfaces using machine learning. J. Phys. Chem. A 126, 4013–4024 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schienbein, P. Spectroscopy from machine learning by accurately representing the atomic polar tensor. J. Chem. Theory Comput. 19, 705–712 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ponting, D. J., van Deursen, R. & Ott, M. A. Machine learning predicts degree of aromaticity from structural fingerprints. J. Chem. Inf. Model. 60, 4560–4568 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Acosta, C. M., Ogoshi, E., Souza, J. A. & Dalpian, G. M. Machine learning study of the magnetic ordering in 2d materials. ACS Appl. Mater. Interfaces. 14, 9418–9432 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malakar, P., Thakur, M. S. H., Nahid, S. M. & Islam, M. M. Data-driven machine learning to predict mechanical properties of monolayer transition-metal dichalcogenides for applications in flexible electronics. ACS Appl. Nano Mater. 5, 16489–16499 (2022).

    Article 
    CAS 

    Google Scholar 

  • Lee, B. K. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 381, 999–1006 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jiménez-Luna, J., Grisoni, F. & Schneider, G. Drug discovery with explainable artificial intelligence. Nat. Mach. Intell. 2, 573–584 (2020).

    Article 

    Google Scholar 

  • Jain, A. et al. Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article 
    ADS 

    Google Scholar 

  • Symons, B. C. B., Bane, M. K. & Popelier, P. L. A. Dl_fflux: a parallel, quantum chemical topology force field. J. Chem. Theory Comput. 17, 7043–7055 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDonagh, J. L., Silva, A. F., Vincent, M. A. & Popelier, P. L. A. Machine learning of dynamic electron correlation energies from topological atoms. J. Chem. Theory Comput. 14, 216–224 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Symons, B. C. B. & Popelier, P. L. A. Application of quantum chemical topology force field flux to condensed matter simulations: Liquid water. J. Chem. Theory Comput. 18, 5577–5588 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hawe, G. I. & Popelier, P. L. A water potential based on multipole moments trained by machine learning—reducing maximum energy errors. Can. J. Chem. 88, 1104–1111 (2010).

    Article 
    CAS 

    Google Scholar 

  • Maxwell, P., di Pasquale, N., Cardamone, S. & Popelier, P. L. A. The prediction of topologically partitioned intra-atomic and inter-atomic energies by the machine learning method kriging. Theor. Chem. Acc. 135, 195 (2016).

  • Handley, C. M. & Popelier, P. L. A. Dynamically polarizable water potential based on multipole moments trained by machine learning. J. Chem. Theory Comput. 5, 1474–1489 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallegos, M., Guevara-Vela, J. M. & Martín Pendás, A. NNAIMQ: a neural network model for predicting QTAIM charges. J. Chem. Phys. 156, 014112 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Oviedo, F., Ferres, J. L., Buonassisi, T. & Butler, K. T. Interpretable and explainable machine learning for materials science and chemistry. Acc. Mater. Res. 3, 597–607 (2022).

    Article 
    CAS 

    Google Scholar 

  • Faroughi, S. A. et al. Physics-guided, physics-informed, and physics-encoded neural networks in scientific computing: fluid and solid mechanics. J. Comput. Inf. Sci. Eng. 24, 040802 (2024).

  • Jiménez-Luna, J., Skalic, M., Weskamp, N. & Schneider, G. Coloring molecules with explainable artificial intelligence for preclinical relevance assessment. J. Chem. Inf. Model. 61, 1083–1094 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Tjoa, E. & Guan, C. A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Guidotti, R. et al. A survey of methods for explaining black box models. ACM Comput. Surv. 51, 1–42 (2018).

    Article 

    Google Scholar 

  • Schütt, K. et al. Schnet: a continuous-filter convolutional neural network for modeling quantum interactions. In (eds Guyon, I. et al.) Advances in Neural Information Processing Systems, vol. 30 (Curran Associates, Inc., 2017).

  • Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. Schnet—a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Schütt, K. T. et al. Schnetpack: a deep learning toolbox for atomistic systems. J. Chem. Theory Comput. 15, 448–455 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Westermayr, J. & Maurer, R. J. Physically inspired deep learning of molecular excitations and photoemission spectra. Chem. Sci. 12, 10755–10764 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward, L. et al. Machine learning prediction of accurate atomization energies of organic molecules from low-fidelity quantum chemical calculations. MRS Commun. 9, 891–899 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gao, P., Zhang, J., Sun, Y. & Yu, J. Accurate predictions of aqueous solubility of drug molecules via the multilevel graph convolutional network (MGCN) and SchNet architectures. Phys. Chem. Chem. Phys. 22, 23766–23772 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Erlebach, A., Nachtigall, P. & Grajciar, L. Accurate large-scale simulations of siliceous zeolites by neural network potentials. Npj Comput. Mater. 8, 1–12 (2022).

    Article 

    Google Scholar 

  • Zhang, J., Chen, J., Hu, P. & Wang, H. Identifying the composition and atomic distribution of pt-au bimetallic nanoparticle with machine learning and genetic algorithm. Chin. Chem. Lett. 31, 890–896 (2020).

    Article 
    CAS 

    Google Scholar 

  • Westermayr, J., Gastegger, M. & Marquetand, P. Combining SchNet and SHARC: the SchNarc machine learning approach for excited-state dynamics. J. Phys. Chem. Lett. 11, 3828–3834 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Timm, M. J., Matta, C. F., Massa, L. & Huang, L. The localization–delocalization matrix and the electron-density-weighted connectivity matrix of a finite graphene nanoribbon reconstructed from kernel fragments. J. Phys. Chem. A 118, 11304–11316 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sumar, I., Ayers, P. W., Cook, R. & Matta, C. F. Aromaticity of rings-in-molecules (rims) from electron localization–delocalization matrices (ldms)*. Phys. Scr. 91, 013001 (2015).

    Article 
    ADS 

    Google Scholar 

  • Sumar, I., Ayers, P. W. & Matta, C. F. Electron localization-delocalization matrices in the prediction of pka’s and uv-wavelengths of maximum absorbance of p-benzoic acids and the definition of super-atoms in molecules. Chem. Phys. Lett. 612, 190–197 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rafat, M., Shaik, M. & Popelier, P. L. A. Transferability of quantum topological atoms in terms of electrostatic interaction energy. J. Phys. Chem. A 110, 13578–13583 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silva, A. F., Vincent, M. A., McDonagh, J. L. & Popelier, P. L. A. The transferability of topologically partitioned electron correlation energies in water clusters. ChemPhysChem 18, 3360–3368 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lefrancois-Gagnon, K. M. & Mawhinney, R. C. Toward universal substituent constants: transferability of group descriptors from the quantum theory of atoms in molecules. J. Comput. Chem. 43, 265–278 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mooij, W. T. M., van Eijck, B. P. & Kroon, J. Transferable ab initio intermolecular potentials. 2. Validation and application to crystal structure prediction. J. Phys. Chem. A 103, 9883–9890 (1999).

    Article 
    CAS 

    Google Scholar 

  • Grabowsky, S. et al. Transferability and reproducibility in electron-density studies bond-topological and atomic properties of tripeptides of the type l-alanyl-x-l-alanine. Acta. Crystallogr. B. Struct. Sci. Cryst. 65, 488–501 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maxwell, P. & Popelier, P. L. Transferable atoms: an intra-atomic perspective through the study of homogeneous oligopeptides. Mol. Phys. 114, 1304–1316 (2015).

    Article 
    ADS 

    Google Scholar 

  • Ferro-Costas, D., Francisco, E., Martín Pendás, A. & Mosquera, R. A. How electronic excitation can be used to inhibit some mechanisms associated to substituent effects. ChemPhysChem 17, 2666–2671 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vila, A. & Mosquera, R. A. Transferability in alkyl monoethers. II. Methyl and methylene fragments. J. Chem. Phys. 115, 1264–1273 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rykounov, A. A. & Tsirelson, V. G. Quantitative estimates of transferability of the QTAIM descriptors. case study of the substituted hydropyrimidines. J. Mol. Struct. 906, 11–24 (2009).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Y., Mills, M. J. L., Popelier, P. L. A. & Jensen, F. Comprehensive analysis of energy minima of the 20 natural amino acids. J. Phys. Chem. A 118, 7876–7891 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hymel, J. H., Townsend, J. & Vogiatzis, K. D. Co2 capture on functionalized calixarenes: a computational study. J. Phys. Chem. A 123, 10116–10122 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sansone, F., Baldini, L., Casnati, A. & Ungaro, R. Calixarenes: from biomimetic receptors to multivalent ligands for biomolecular recognition. New J. Chem. 34, 2715–2728 (2010).

    Article 
    CAS 

    Google Scholar 

  • Blazejczyk, A. et al. Anion-binding calixarene receptors: synthesis, microstructure, and effect on properties of polyether electrolytes. Chem. Mater. 17, 1535–1547 (2005).

    Article 
    CAS 

    Google Scholar 

  • Kumar, R. et al. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chem. Rev. 119, 9657–9721 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Español, E. & Villamil, M. Calixarenes: generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules. Biomolecules 9, 90 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y., Li, H. & Yang, Y.-W. Controlled drug delivery systems based on calixarenes. Chin. Chem. Lett. 26, 825–828 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sreedevi, P. et al. Calix[4]arene based redox sensitive molecular probe for SERS guided recognition of labile iron pool in tumor cells. Anal. Chem. 90, 7148–7153 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Durmaz, M., Halay, E. & Bozkurt, S. Recent applications of chiral calixarenes in asymmetric catalysis. Beilstein J. Org. Chem. 14, 1389–1412 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, D.-S., Uzunova, V. D., Su, X., Liu, Y. & Nau, W. M. Operational calixarene-based fluorescent sensing systems for choline and acetylcholine and their application to enzymatic reactions. Chem. Sci. 2, 1722–1734 (2011).

    Article 
    CAS 

    Google Scholar 

  • Montà-González, G., Sancenón, F., Martínez-Máñez, R. & Martí-Centelles, V. Purely covalent molecular cages and containers for guest encapsulation. Chem. Rev. 122, 13636–13708 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, F., Higson, S. P. J., Oliveira, O. N. & Shimizu, F. M. Calixarene-based gas sensors. In Materials Horizons: From Nature to Nanomaterials, 433–462 (Springer Singapore, 2020).

  • Filenko, D. et al. Chemical gas sensors based on calixarene-coated discontinuous gold films. Sens. Actuators B 111, 264–270 (2005).

    Article 

    Google Scholar 

  • Kumar, S., Chawla, S. & Zou, M. C. Calixarenes based materials for gas sensing applications: a review. J. Incl. Phenom. Macrocycl. Chem. 88, 129–158 (2017).

    Article 
    CAS 

    Google Scholar 

  • Cram, D. J., Tanner, M. E. & Knobler, C. B. Host-guest complexation. 58. Guest release and capture by hemicarcerands introduces the phenomenon of constrictive binding. J. Am. Chem. Soc. 113, 7717–7727 (1991).

    Article 
    CAS 

    Google Scholar 

  • Yao, C.-Y. & de Silva, A. P. Recent developments in CO2 capture/storage/utilization with aromatic macrocycles. Carbon Capture Sci. Technol. 4, 100058 (2022).

    Article 
    CAS 

    Google Scholar 

  • Taghizadeh, F., Mokhtarani, B., Zadmard, R. & Jalali, M. R. Highly selective CO2 uptake in calix[4]arene compounds immobilized on silica gel. Chem. Eng. J. 417, 128115 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shi, J.-W. et al. Calixarene-functionalized stable bismuth oxygen clusters for specific CO2-to-hcooh electroreduction. ACS Catal. 12, 14436–14444 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tsue, H. et al. Crystallographic analysis of CO2 sorption state in seemingly nonporous molecular crystal of azacalix[4]arene tetramethyl ether exhibiting highly selective co2 uptake. CrystEngComm 14, 1021–1026 (2012).

    Article 
    CAS 

    Google Scholar 

  • Wu, W. et al. Design of calix-based cages for CO2 capture. Ind. Eng. Chem. Res. 56, 4502–4507 (2017).

    Article 
    CAS 

    Google Scholar 

  • Baldini, L. et al. CO2 capture by multivalent amino-functionalized calix[4]arenes: self-assembly, absorption, and qcm detection studies. J. Org. Chem. 76, 3720–3732 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957).

    Article 
    MathSciNet 

    Google Scholar 

  • Pembere, A. M. S., Liu, X., Ding, W. & Luo, Z. How partial atomic charges and bonding orbitals affect the reactivity of aluminum clusters with water? J. Phys. Chem. A 122, 3107–3114 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Iwaoka, M., Komatsu, H., Katsuda, T. & Tomoda, S. Nature of nonbonded se-o interactions characterized by 17O NMR spectroscopy and NBO and AIM analyses. J. Am. Chem. Soc. 126, 5309–5317 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geidl, S. et al. High-quality and universal empirical atomic charges for chemoinformatics applications. J. Cheminform. 7, 59 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Outeiral, C., Vincent, M. A., Martín Pendás, A. & Popelier, P. L. A. Revitalizing the concept of bond order through delocalization measures in real space. Chem. Sci. 9, 5517–5529 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiberg, K. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24, 1083–1096 (1968).

    Article 
    CAS 

    Google Scholar 

  • Mayer, I. Charge, bond order and valence in the AB initio SCF theory. Chem. Phys. Lett. 97, 270–274 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Francisco, E., Martín Pendás, A., García-Revilla, M. & Boto, R. Á. A hierarchy of chemical bonding indices in real space from reduced density matrices and cumulants. Comput. Theor. Chem. 1003, 71–78 (2013).

    Article 
    CAS 

    Google Scholar 

  • Maheshwary, S., Patel, N., Sathyamurthy, N., Kulkarni, A. D. & Gadre, S. R. Structure and stability of water clusters (h2o)n, n = 8-20: An ab initio investigation. J. Phys. Chem. A 105, 10525–10537 (2001).

    Article 
    CAS 

    Google Scholar 

  • Neese, F., Wennmohs, F., Becker, U. & Riplinger, C. The orca quantum chemistry program package. J. Chem. Phys. 152, 224108 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jmol: an open-source java viewer for chemical structures in 3d. http://www.jmol.org/.

  • Miguel Gallegos. Schnet4aim-data, mendeley data, v1. https://doi.org/10.17632/8f9g79pcvj.1, https://data.mendeley.com/datasets/8f9g79pcvj/1 (2024).

  • Gallegos, M. Explainable chemical artificial intelligence: Accurate machine learning of real-space chemical descriptors. https://github.com/m-gallegos/SchNet4AIM (2024). SchNet4AIM. https://doi.org/10.5281/zenodo.10802320.

  • Frisch, M. J. et al. Gaussian 09 Revision E.01. (Gaussian Inc., Wallingford CT, 2009).

  • Martín Pendás, A. & Francisco, E. Promolden. a qtaim/iqa code (avaliable from the authors upon request).

  • Keith, T. A. Aimall, tk gristmill software, overland park, KS, USA (2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *