The application of machine learning techniques in posttraumatic stress disorder: a systematic review and meta-analysis

Machine Learning


  • Association, A. P. Diagnostic and Statistical Manual Of Mental Disorders: DSM-5 5th edn, 271–280 (American Psychiatric Publishing, 2013).

  • Mota, N. et al. Course and predictors of posttraumatic stress disorder in the canadian armed forces: a nationally representative, 16-year follow-up study. Can. J. Psychiatry 66, 982–995 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Benjet, C. et al. The epidemiology of traumatic event exposure worldwide: results from the World Mental Health Survey Consortium. Psychol. Med. 46, 327–343 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yehuda, R. et al. Post-traumatic stress disorder. Nat. Rev. Dis. Prim. 1, 108–114 (2015).

    Google Scholar 

  • Shalev, A., Liberzon, I. & Marmar, C. Post-traumatic stress disorder. N. Engl. J. Med. 376, 2459–2469 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Song, H. et al. Association of stress-related disorders with subsequent neurodegenerative diseases. JAMA Neurol. 77, 700–709 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Kim, Y. K. & Na, K. S. Application of machine learning classification for structural brain MRI in mood disorders: critical review from a clinical perspective. Prog. Neuro-Psychopharmacol. Biol Psychiatry 80, 71–80 (2018).

    Article 

    Google Scholar 

  • Danmin, M. et al. Fusion and model construction of multi-objective measurement of personality traits. J. Air Force Med. Univ. 43, 131–135 (2022).

    Google Scholar 

  • Jan, Z. et al. The role of machine learning in diagnosing bipolar disorder: scoping review. J. Med. Internet Res. 23, e29749–e29767 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sawalha, J. et al. Detecting presence of PTSD using sentiment analysis from text data. Front. Psychiatry 12, 132–146 (2022).

    Article 

    Google Scholar 

  • Christ, N. M., Elhai, J. D., Forbes, C. N., Gratz, K. L. & Tull, M. T. A machine learning approach to modeling PTSD and difficulties in emotion regulation. Psychiatry Res. 297, 113712–113720 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Held, P. et al. Who will respond to intensive PTSD treatment? A machine learning approach to predicting response prior to starting treatment. J. Psychiatr. Res. 151, 78–85 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schultebraucks, K. et al. Forecasting individual risk for long-term posttraumatic stress disorder in emergency medical settings using biomedical data: a machine learning multicenter cohort study. Neurobiol. Stress 14, 100297–100306 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuan, P. F. et al. Metabolomics analysis of post-traumatic stress disorder symptoms in World Trade Center responders. Transl. Psychiatry 12, 174–180 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoo, L. S., Lim, M. K., Chong, C. Y. & McNaney, R. Machine learning for multimodal mental health detection: a systematic review of passive sensing approaches. Sens. (Basel) 24, 348–412 (2024).

    Article 

    Google Scholar 

  • Dupont, T., Kentish-Barnes, N., Pochard, F., Duchesnay, E. & Azoulay, E. Prediction of post-traumatic stress disorder in family members of ICU patients: a machine learning approach. Intensive Care Med 50, 114–124 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Shaw, S. A., Ward, K. P., Pillai, V. & Hinton, D. E. A group mental health randomized controlled trial for female refugees in Malaysia. Am. J. Orthopsychiatry 89, 665–674 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Shiba, K. et al. Uncovering heterogeneous associations of disaster-related traumatic experiences with subsequent mental health problems: A machine learning approach. Psychiatry Clin. Neurosci. 76, 97–105 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samuelson, K. W. et al. Mental health and resilience during the coronavirus pandemic: a machine learning approach. J. Clin. Psychol. 78, 821–846 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Schultebraucks, K. & Chang, B. P. The opportunities and challenges of machine learning in the acute care setting for precision prevention of posttraumatic stress sequelae. Exp. Neurol. 336, 113526–113541 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Saba, T. et al. Machine learning for post-traumatic stress disorder identification utilizing resting-state functional magnetic resonance imaging. Microsc Res. Tech. 85, 2083–2094 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhu, Z. et al. Combining deep learning and graph-theoretic brain features to detect posttraumatic stress disorder at the individual level. Diagnostics 11, 11080000–11080012 (2021).

    Article 

    Google Scholar 

  • Yang, J. et al. Using deep learning to classify pediatric posttraumatic stress disorder at the individual level. BMC Psychiatry 21, 535–544 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sheynin, S. et al. Deep learning model of fMRI connectivity predicts PTSD symptom trajectories in recent trauma survivors. Neuroimage 238, 118242–118254 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Li, L. et al. Hippocampal subfield alterations in pediatric patients with post-traumatic stress disorder. Soc. Cogn. Affect Neurosci. 16, 334–344 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Z. et al. Neural connectome prospectively encodes the risk of post-traumatic stress disorder (PTSD) symptom during the COVID-19 pandemic. Neurobiol. Stress 15, 100378–100387 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholson, A. A. et al. Classifying heterogeneous presentations of PTSD via the default mode, central executive, and salience networks with machine learning. NeuroImage Clin. 27, 102262–102276 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lanka, P. et al. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav. 14, 2378–2416 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. W. et al. Riemannian classifier enhances the accuracy of machine-learning-based diagnosis of PTSD using resting EEG. Prog. Neuropsychopharmacol. Biol. Psychiatry 102, 109960–109967 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Harricharan, S. et al. PTSD and its dissociative subtype through the lens of the insula: anterior and posterior insula resting-state functional connectivity and its predictive validity using machine learning. Psychophysiology 57, 72–94 (2020).

    Article 

    Google Scholar 

  • Salminen, L. E. et al. Adaptive identification of cortical and subcortical imaging markers of early life stress and posttraumatic stress disorder. J. Neuroimaging 29, 335–343 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rangaprakash, D., Dretsch, M. N., Katz, J. S., Denney, T. S. & Deshpande, G. Dynamics of segregation and integration in directional brain networks: Illustration in soldiers with PTSD and neurotrauma. Front Neurosci. 13, 803–825 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholson, A. A. et al. Machine learning multivariate pattern analysis predicts classification of posttraumatic stress disorder and its dissociative subtype: a multimodal neuroimaging approach. Psychol. Med. 49, 2049–2059 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rangaprakash, D. et al. Identifying disease foci from static and dynamic effective connectivity networks: Illustration in soldiers with trauma. Hum. Brain Mapp. 39, 264–287 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, C. et al. Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Hum. Brain Mapp. 38, 4479–4496 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, F. et al. Characterization of post-traumatic stress disorder using resting-state fMRI with a multi-level parametric classification approach. Brain Topogr. 28, 221–237 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Nicholson, A. A. et al. Differential mechanisms of posterior cingulate cortex downregulation and symptom decreases in posttraumatic stress disorder and healthy individuals using real-time fMRI neurofeedback. Brain Behav. 12, 2441–2461 (2022).

    Article 

    Google Scholar 

  • Ramos-Lima, L. F. et al. Identifying posttraumatic stress disorder staging from clinical and sociodemographic features: a proof-of-concept study using a machine learning approach. Psychiatry Res. 311, 114489–114496 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, T. et al. Toward reduced burden in evidence-based assessment of PTSD: a machine learning study. Assessment 28, 1971–1982 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Ge, F., Li, Y., Yuan, M., Zhang, J. & Zhang, W. Identifying predictors of probable posttraumatic stress disorder in children and adolescents with earthquake exposure: A longitudinal study using a machine learning approach. J. Affect Disord. 264, 483–493 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Leightley, D., Williamson, V., Darby, J. & Fear, N. T. Identifying probable post-traumatic stress disorder: applying supervised machine learning to data from a UK military cohort. J. Ment. Health 28, 34–41 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Wshah, S., Skalka, C. & Price, M. Predicting posttraumatic stress disorder risk: a machine learning approach. JMIR Ment. Health 6, e13946–e13957 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Magoc, D., Magoc, T., Tomaka, J. & Morales-Monks, S. Automatic identification of firefighters with post-traumatic stress disorder based on demographic characteristics and self-reported alcohol consumption. JUS 10, 198–203 (2016).

    Google Scholar 

  • Zafari, H., Kosowan, L., Zulkernine, F. & Signer, A. Diagnosing post-traumatic stress disorder using electronic medical record data. Health Inform. J. 27, 159–178 (2021).

    Article 

    Google Scholar 

  • He, Q., Veldkamp, B. P., Glas, C. A. & de Vries, T. Automated assessment of patients’ self-narratives for posttraumatic stress disorder screening using natural language processing and text mining. Assessment 24, 157–172 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Lekkas, D. & Jacobson, N. C. Using artificial intelligence and longitudinal location data to differentiate persons who develop posttraumatic stress disorder following childhood trauma. Sci. Rep. 11, 10303–10312 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shahid, F. et al. Leveraging free-hand sketches for potential screening of PTSD. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 94:01–94:22 (2020).

    Article 

    Google Scholar 

  • Worthington, M. A., Mandavia, A. & Richardson-Vejlgaard, R. Prospective prediction of PTSD diagnosis in a nationally representative sample using machine learning. BMC Psychiatry 20, 532–541 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tahmasian, M. et al. Differentiation chronic post traumatic stress disorder patients from healthy subjects using objective and subjective sleep-related parameters. Neurosci. Lett. 650, 174–179 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Passos, I. C. et al. Machine learning and big data analytics in bipolar disorder: a position paper from the International Society for Bipolar Disorders Big Data Task Force. Bipolar Disord. 21, 582–594 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ramos-Lima, L. F., Waikamp, V., Antonelli-Salgado, T., Passos, I. C. & Freitas, L. H. M. The use of machine learning techniques in trauma-related disorders: a systematic review. J. Psychiatr. Res 121, 159–172 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schultebraucks, K., Yadav, V., Shalev, A. Y., Bonanno, G. A. & Galatzer-Levy, I. R. Deep learning-based classification of posttraumatic stress disorder and depression following trauma utilizing visual and auditory markers of arousal and mood. Psychol. Mede 52, 957–967 (2022).

    Article 

    Google Scholar 

  • Sezgin, E. Artificial intelligence in healthcare: complementing, not replacing, doctors and healthcare providers. Digit Health 9, 1–5 (2023).

    Google Scholar 

  • Ngiam, K. Y. & Khor, I. W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 20, e262–e273 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lee, Y. et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J. Affect Disord. 241, 519–532 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Schultebraucks, K. & Galatzer-Levy, I. R. Machine learning for prediction of posttraumatic stress and resilience following trauma: an overview of basic concepts and recent advances. J. Trauma Stress 32, 215–225 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ouyang, H. et al. The increase of PTSD in front-line health care workers during the COVID-19 pandemic and the mediating role of risk perception: a one-year follow-up study. Transl. Psychiatry 12, 180–186 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, W. et al. The impact of isolation on comorbidity of PTSD symptoms and depression: evidence from PTRP-5-6 in China. BMC Public Health 24, 21–30 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, N. et al. Prevalence and predictors of PTSS during COVID-19 outbreak in China hardest-hit areas: Gender differences matter. Psychiatry Res. 287, 112921–112927 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. The prevalence of PTSS under the influence of public health emergencies in last two decades: a systematic review and meta-analysis. Clin. Psychol. Rev. 83, 101938–101948 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Jing, W., Zhilei, S. & Weizhi, L. Application of machine learning in mental health. J. Nav. Med Univ. 44, 1145–1153 (2023).

    Google Scholar 

  • Kelly, C. J., Karthikesalingam, A., Suleyman, M., Corrado, G. & King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 17, 195–203 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Al-Hussain, G., Shuweihdi, F., Alali, H., Househ, M. & Abd-Alrazaq, A. The effectiveness of supervised machine learning in screening and diagnosing voice disorders: systematic review and meta-analysis. J. Med Internet Res 24, 72–90 (2022).

    Article 

    Google Scholar 

  • Jathanna, N. et al. Diagnostic utility of artificial intelligence for left ventricular scar identification using cardiac magnetic resonance imaging—a systematic review. Cardiovasc Digit Health J. 2, S21–S29 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eckhardt, C. M. et al. Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg. Sports Traumatol. Arthrosc. 31, 376–381 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71-n79 (2021).

  • Wang, J. et al. Machine learning methods to discriminate posttraumatic stress disorder: a protocol of systematic review and meta-analysis. Digit Health 10, 20552076241239238–20552076241239243 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Irwig, L., Macaskill, P., Berry, G. & Glasziou, P. Bias in meta-analysis detected by a simple, graphical test. Graphical test is itself biased. BMJ 316, 470–471 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *