Mathis, N. et al. “Predicting Prime Editing Efficiency and Product Purity with Deep Learning” National Biotechnology 411151–1159 (2023).
Kim, HK et al. Predicting the efficiency of primed guide RNA editing in human cells. National Biotechnology 39198–206 (2021).
Koeppel, J. et al. Predicting prime-editing insertion efficiency using sequence features and DNA repair determinants. National Biotechnology 411446–1456 (2023).
Yu, G. et al. Predicting the efficiency of diverse prime editing systems in multiple cell types. cell 1862256–2272 (2023).
Chen, PJ et al. Enhancing a primed editing system by engineering cellular determinants of editing outcome. cell 1845635–5652 (2021).
Ferreira da Silva, J. et al. Prime editing is more efficient and fidelity in the absence of mismatch repair. Nuts. Communication. 13760 (2022).
Trojan, J. et al. Functional analysis of hMLH1 mutants and HNPCC-associated mutations using a human expression system. Gastroenterology 122211–219 (2002).
Matheson, EC & Hall, AG Evaluation of mismatch repair function in leukemic cell lines and blasts from children with acute lymphoblastic leukemia. Carcinogenesis twenty four31–38 (2003).
Böck, D. et al. Prime in vivo editing of metabolic liver disease in mice. Science Translation Medicine 14eabl9238 (2022).
Lundberg, SM & Lee, SI A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30 (NIPS 2017) (Eds. Guyon, I. et al.) 4766–4775 (Curran Associates, 2017).
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Krishnapuram, B. et al., eds.) 785–794 (ACM, 2016).
Anzalone, AV et al. Search and replace genome editing without double-strand breaks or donor DNA. Nature 576149–157 (2019).
Brooks, DL, et al. “Efficient in vivo prime editing corrects the most frequent phenylketonuria mutations with high unmet medical need.” Am. J. Hum. Genet. 1102003–2014 (2023).
Schep, R. et al. Influence of chromatin context on the balance of Cas9-induced DNA double-strand break repair pathways. Molecular and Cellular 812216–2230 (2021).
Chen, E. et al. Chromatin decoration for enhanced genome editing using CRISPR−Cas9. Proceedings of the National Academy of Sciences 119e2204259119 (2022).
Daer, RM, Cutts, JP, Brafman, DA, Haynes, KA The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synthetic Biology 6428–438 (2017).
Ding, X. et al. Improving CRISPR-Cas9 genome editing efficiency by fusion with chromatin modulating peptides. CRISPR J. 251–63 (2019).
Pokusaeva, VO, Diez, AR, Espinar, L., Pérez, AT & Filion, GJ Strand asymmetry affects mismatch resolution during single-strand annealing. Genome Biology twenty three93 (2022).
Akhtar, W. et al. Using TRIP for genome-wide position effect analysis in cultured cells. National Protocol 91255–1281 (2014).
Luo, Y. et al., “New Developments in the Encyclopedia of DNA Elements (ENCODE) Data Portal.” Nucleic Acid Research 48D882–D889 (2020).
Buenrostro, J., Wu, B., Chang, H. & Greenleaf, W. ATAC-seq: a method to assay genome-wide chromatin accessibility. Curr. Protoc. Mol. Biol. 10921.29.1–21.29.9 (2015).
Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions of active and inactive genes. cell 1381019–1031 (2009).
Heintzman, ND et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 39311–318 (2007).
Bonasio, R., Tu, S. & Reinberg, D. Molecular signals of epigenetic state. Science 330612–616 (2010).
Peters, AHFM et al. “Partitioning and plasticity of repressive histone methylation states in mammalian chromatin.” Molecular and Cellular 121577–1589 (2003).
McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimensionality Reduction. Preprint at https://arxiv.org/abs/1802.03426 (2020).
Bannister, AJ et al. Spatial distribution of histone H3 dimethyllysine 36 and trimethyllysine 36 in active genes. Journal of Biology 28017732–17736 (2005).
Li, X., et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Preprint BioRxiv https://doi.org/10.1101/2023.04.12.536587 (2023).
Kim, HK et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Advanced Science Fiveeaax9249 (2019).
Park, S.-J. et al. Targeted mutagenesis in mouse cells and embryos using enhanced prime editors. Genome Biology twenty two170 (2021).
Liu, N. et al. HDAC inhibitors improve CRISPR/Cas9-mediated prime and base editing. Molecular Therapeutics Nucleic Acids 2936–46 (2022).
Cirincione, A. et al. A benchmarked highly efficient prime-editing platform for multiplex dropout screening. Preprint BioRxiv https://doi.org/10.1101/2024.03.25.585978 (2024).
Mathis, N. & Allam, A. PRIDICT2.0 GitHub code repository. GitHub https://github.com/uzh-dqbm-cmi/PRIDICT2 (2024).
Mathis, N. ePRIDICT GitHub code repository. GitHub https://github.com/Schwank-Lab/epridict (2024).
Arbab, M. et al. Determinants of base editing outcomes using targeted library analysis and machine learning. cell 182463–480 (2020).
Nelson, JW et al. Engineered pegRNA improves prime editing efficiency. National Biotechnology 40402–410 (2022).
Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Natural Method 11783–784 (2014).
Mátés, L. et al. Molecular evolution of novel hyperactive molecules sleeping beauty Transposases enable robust and stable gene transfer in vertebrates. Nat Genet. 41753–761 (2009).
Richter, MF et al. Phage-assisted evolution of adenine base editors with improved Cas domain compatibility and activity. National Biotechnology 38883–891 (2020).
Walton, RT, Christie, KA, Whittaker, MN & Kleinstiver, BP. Unconstrained genome targeting with a nearly PAM-less engineered CRISPR-Cas9 variant. Science 368290–296 (2020).
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 1710 (2011).
Lorenz, R. et al. ViennaRNA Package 2.0. Algorithm Mol. Biol. 626 (2011).
Langmead, B. & Salzberg, S. L. Rapid gapped read alignment using Bowtie 2. Natural Method 9357–359 (2012).
Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. National Biotechnology 37224–226 (2019).
Paszke, A. et al. PyTorch: An imperative, high-performance deep learning library. Preprint: https://arxiv.org/abs/1912.01703 (2019).
Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 122825–2830 (2011).
Google Academic
Yu, G. GenET: a Python package for genome editing research (v. 0.12.0). Python Software Foundation https://pypi.org/project/genet/0.12.0/ (2024).
GitHub code repository by Weller, J. Koeppel et al., 2023 (Minsepai). GitHub https://github.com/julianeweller/MinsePIE (2023).
Abadi, M. et al. “TensorFlow: Large-Scale Machine Learning in Heterogeneous Systems” Zenod https://zenodo.org/records/8117732 (2015).
Ryan, D. et al. deeptools/pyBigWig: 0.3.22. Zenod https://doi.org/10.5281/zenodo.7809144 (2023).
Mathis, N. Preserving sequence data: predicting prime editing efficiency by sequence and chromatin context (PRJNA1025026). Sequence Read Archive https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA1025026 (2024).