Machine learning prediction of prime editing efficiency across diverse chromatin contexts

Machine Learning


  • Mathis, N. et al. “Predicting Prime Editing Efficiency and Product Purity with Deep Learning” National Biotechnology 411151–1159 (2023).

    Article CAS PubMed Google Scholar

  • Kim, HK et al. Predicting the efficiency of primed guide RNA editing in human cells. National Biotechnology 39198–206 (2021).

    Article CAS PubMed Google Scholar

  • Koeppel, J. et al. Predicting prime-editing insertion efficiency using sequence features and DNA repair determinants. National Biotechnology 411446–1456 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Yu, G. et al. Predicting the efficiency of diverse prime editing systems in multiple cell types. cell 1862256–2272 (2023).

    Article CAS PubMed Google Scholar

  • Chen, PJ et al. Enhancing a primed editing system by engineering cellular determinants of editing outcome. cell 1845635–5652 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Ferreira da Silva, J. et al. Prime editing is more efficient and fidelity in the absence of mismatch repair. Nuts. Communication. 13760 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Trojan, J. et al. Functional analysis of hMLH1 mutants and HNPCC-associated mutations using a human expression system. Gastroenterology 122211–219 (2002).

    Article CAS PubMed Google Scholar

  • Matheson, EC & Hall, AG Evaluation of mismatch repair function in leukemic cell lines and blasts from children with acute lymphoblastic leukemia. Carcinogenesis twenty four31–38 (2003).

    Article CAS PubMed Google Scholar

  • Böck, D. et al. Prime in vivo editing of metabolic liver disease in mice. Science Translation Medicine 14eabl9238 (2022).

    Article PubMed PubMed Central Google Scholar

  • Lundberg, SM & Lee, SI A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems 30 (NIPS 2017) (Eds. Guyon, I. et al.) 4766–4775 (Curran Associates, 2017).

  • Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Krishnapuram, B. et al., eds.) 785–794 (ACM, 2016).

  • Anzalone, AV et al. Search and replace genome editing without double-strand breaks or donor DNA. Nature 576149–157 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Brooks, DL, et al. “Efficient in vivo prime editing corrects the most frequent phenylketonuria mutations with high unmet medical need.” Am. J. Hum. Genet. 1102003–2014 (2023).

    Article CAS PubMed PubMed Central Google Scholar

  • Schep, R. et al. Influence of chromatin context on the balance of Cas9-induced DNA double-strand break repair pathways. Molecular and Cellular 812216–2230 (2021).

    Article CAS PubMed PubMed Central Google Scholar

  • Chen, E. et al. Chromatin decoration for enhanced genome editing using CRISPR−Cas9. Proceedings of the National Academy of Sciences 119e2204259119 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Daer, RM, Cutts, JP, Brafman, DA, Haynes, KA The impact of chromatin dynamics on Cas9-mediated genome editing in human cells. ACS Synthetic Biology 6428–438 (2017).

    Article CAS PubMed Google Scholar

  • Ding, X. et al. Improving CRISPR-Cas9 genome editing efficiency by fusion with chromatin modulating peptides. CRISPR J. 251–63 (2019).

    Article CAS PubMed Google Scholar

  • Pokusaeva, VO, Diez, AR, Espinar, L., Pérez, AT & Filion, GJ Strand asymmetry affects mismatch resolution during single-strand annealing. Genome Biology twenty three93 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Akhtar, W. et al. Using TRIP for genome-wide position effect analysis in cultured cells. National Protocol 91255–1281 (2014).

    Article CAS PubMed Google Scholar

  • Luo, Y. et al., “New Developments in the Encyclopedia of DNA Elements (ENCODE) Data Portal.” Nucleic Acid Research 48D882–D889 (2020).

    Article CAS PubMed Google Scholar

  • Buenrostro, J., Wu, B., Chang, H. & Greenleaf, W. ATAC-seq: a method to assay genome-wide chromatin accessibility. Curr. Protoc. Mol. Biol. 10921.29.1–21.29.9 (2015).

    Article PubMed Google Scholar

  • Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions of active and inactive genes. cell 1381019–1031 (2009).

    Article CAS PubMed PubMed Central Google Scholar

  • Heintzman, ND et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 39311–318 (2007).

    Article CAS PubMed Google Scholar

  • Bonasio, R., Tu, S. & Reinberg, D. Molecular signals of epigenetic state. Science 330612–616 (2010).

    Article CAS PubMed PubMed Central Google Scholar

  • Peters, AHFM et al. “Partitioning and plasticity of repressive histone methylation states in mammalian chromatin.” Molecular and Cellular 121577–1589 (2003).

    Article CAS PubMed Google Scholar

  • McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection for Dimensionality Reduction. Preprint at https://arxiv.org/abs/1802.03426 (2020).

  • Bannister, AJ et al. Spatial distribution of histone H3 dimethyllysine 36 and trimethyllysine 36 in active genes. Journal of Biology 28017732–17736 (2005).

    Article CAS PubMed Google Scholar

  • Li, X., et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Preprint BioRxiv https://doi.org/10.1101/2023.04.12.536587 (2023).

  • Kim, HK et al. SpCas9 activity prediction by DeepSpCas9, a deep learning-based model with high generalization performance. Advanced Science Fiveeaax9249 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Park, S.-J. et al. Targeted mutagenesis in mouse cells and embryos using enhanced prime editors. Genome Biology twenty two170 (2021).

    Article PubMed PubMed Central Google Scholar

  • Liu, N. et al. HDAC inhibitors improve CRISPR/Cas9-mediated prime and base editing. Molecular Therapeutics Nucleic Acids 2936–46 (2022).

    Article CAS PubMed PubMed Central Google Scholar

  • Cirincione, A. et al. A benchmarked highly efficient prime-editing platform for multiplex dropout screening. Preprint BioRxiv https://doi.org/10.1101/2024.03.25.585978 (2024).

  • Mathis, N. & Allam, A. PRIDICT2.0 GitHub code repository. GitHub https://github.com/uzh-dqbm-cmi/PRIDICT2 (2024).

  • Mathis, N. ePRIDICT GitHub code repository. GitHub https://github.com/Schwank-Lab/epridict (2024).

  • Arbab, M. et al. Determinants of base editing outcomes using targeted library analysis and machine learning. cell 182463–480 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Nelson, JW et al. Engineered pegRNA improves prime editing efficiency. National Biotechnology 40402–410 (2022).

    Article CAS PubMed Google Scholar

  • Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Natural Method 11783–784 (2014).

    Article CAS PubMed PubMed Central Google Scholar

  • Mátés, L. et al. Molecular evolution of novel hyperactive molecules sleeping beauty Transposases enable robust and stable gene transfer in vertebrates. Nat Genet. 41753–761 (2009).

    Article PubMed Google Scholar

  • Richter, MF et al. Phage-assisted evolution of adenine base editors with improved Cas domain compatibility and activity. National Biotechnology 38883–891 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Walton, RT, Christie, KA, Whittaker, MN & Kleinstiver, BP. Unconstrained genome targeting with a nearly PAM-less engineered CRISPR-Cas9 variant. Science 368290–296 (2020).

    Article CAS PubMed PubMed Central Google Scholar

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 1710 (2011).

    Article Google Scholar

  • Lorenz, R. et al. ViennaRNA Package 2.0. Algorithm Mol. Biol. 626 (2011).

    Article PubMed PubMed Central Google Scholar

  • Langmead, B. & Salzberg, S. L. Rapid gapped read alignment using Bowtie 2. Natural Method 9357–359 (2012).

    Article CAS PubMed PubMed Central Google Scholar

  • Clement, K. et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. National Biotechnology 37224–226 (2019).

    Article CAS PubMed PubMed Central Google Scholar

  • Paszke, A. et al. PyTorch: An imperative, high-performance deep learning library. Preprint: https://arxiv.org/abs/1912.01703 (2019).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 122825–2830 (2011).

    Google Academic

  • Yu, G. GenET: a Python package for genome editing research (v. 0.12.0). Python Software Foundation https://pypi.org/project/genet/0.12.0/ (2024).

  • GitHub code repository by Weller, J. Koeppel et al., 2023 (Minsepai). GitHub https://github.com/julianeweller/MinsePIE (2023).

  • Abadi, M. et al. “TensorFlow: Large-Scale Machine Learning in Heterogeneous Systems” Zenod https://zenodo.org/records/8117732 (2015).

  • Ryan, D. et al. deeptools/pyBigWig: 0.3.22. Zenod https://doi.org/10.5281/zenodo.7809144 (2023).

  • Mathis, N. Preserving sequence data: predicting prime editing efficiency by sequence and chromatin context (PRJNA1025026). Sequence Read Archive https://www.ncbi.nlm.nih.gov/sra/?term=PRJNA1025026 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *