Wang, R., Klein, M. L., Carnevale, V. & Borguet, E. Investigations of water/oxide interfaces by molecular dynamics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science 11, https://doi.org/10.1002/wcms.1537 (2021).
Jeanmairet, G., Rotenberg, B. & Salanne, M. Microscopic simulations of electrochemical double-layer capacitors. Chemical Reviews 122, 10860–10898, https://doi.org/10.1021/acs.chemrev.1c00925 (2022).
Google Scholar
Björneholm, O. et al. Water at interfaces. Chemical Reviews 116, 7698–7726, https://doi.org/10.1021/acs.chemrev.6b00045 (2016).
Google Scholar
Sivula, K. & Krol, R. v. d. Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials 1, 15010, https://doi.org/10.1038/natrevmats.2015.10 (2016).
Google Scholar
Fenter, P. & Sturchio, N. C. Mineral-water interfacial structures revealed by synchrotron x-ray scattering. Progress in Surface Science 77, 171–258 (2004).
Google Scholar
Al-Abadleh, H. A. & Grassian, V. Ft-ir study of water adsorption on aluminum oxide surfaces. Langmuir 19, 341–347 (2003).
Google Scholar
Xu, J., Chen, M., Zhang, C. & Wu, X. First-principles study of the infrared spectrum in liquid water from a systematically improved description of h-bond network. Physical Review B 99, 205123 (2019).
Google Scholar
Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nature Materials 18, 697–701, https://doi.org/10.1038/s41563-019-0356-x (2019).
Google Scholar
Perakis, F. et al. Vibrational spectroscopy and dynamics of water. Chemical reviews 116, 7590–7607 (2016).
Google Scholar
Andrade, M. F. C., Ko, H.-Y., Zhang, L., Car, R. & Selloni, A. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics. Chemical Science 11, 2335–2341, https://doi.org/10.1039/c9sc05116c (2020).
Google Scholar
Guo, Z., Ambrosio, F., Chen, W., Gono, P. & Pasquarello, A. Alignment of Redox Levels at Semiconductor-Water Interfaces. Chemistry of Materials 30, 94–111, https://doi.org/10.1021/acs.chemmater.7b02619 (2018).
Google Scholar
Fan, X.-T., Wen, X.-J., Zhuang, Y.-B. & Cheng, J. Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics. Journal of Energy Chemistry 82, 239–247, https://doi.org/10.1016/j.jechem.2023.03.013 (2023).
Google Scholar
Hu, J.-Y., Zhuang, Y.-B. & Cheng, J. Band alignment of CoO(100)-water and CoO(111)-water interfaces accelerated by machine learning potentials. The Journal of Chemical Physics 161, 134110, https://doi.org/10.1063/5.0224137 (2024).
Google Scholar
Deringer, V. L. et al. Gaussian process regression for materials and molecules. Chemical Reviews 121, 10073–10141, https://doi.org/10.1021/acs.chemrev.1c00022 (2021).
Google Scholar
Behler, J. Four generations of high-Dimensional neural network potentials. Chemical Reviews 121, 10037–10072, https://doi.org/10.1021/acs.chemrev.0c00868 (2021).
Google Scholar
Wen, T., Zhang, L., Wang, H., Weinan, E. & Srolovitz, D. J. Deep potentials for materials science. Materials Futures 1, 022601 (2022).
Google Scholar
Zhuang, Y.-B. ElectroFace, https://doi.org/10.12463/AI4EC/8NPZZC (2024).
Zhu, J.-X., Cheng, J. & Doblhoff-Dier, K. Dielectric profile at the Pt(111)/water interface. The Journal of Chemical Physics 162, 024702, https://doi.org/10.1063/5.0239284 (2025).
Google Scholar
Jia, M., Zhuang, Y.-B., Wang, F., Zhang, C. & Cheng, J. Water-mediated proton hopping mechanisms at the SnO2(110)/H2O interface from ab initio deep potential molecular dynamics. Precision Chemistry (2024).
Zhuang, Y.-B., Bi, R.-H. & Cheng, J. Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics. The Journal of Chemical Physics 157, 164701, https://doi.org/10.1063/5.0126333 (2022).
Google Scholar
Zhuang, Y.-B. & Cheng, J. Deciphering the Anomalous Acidic Tendency of Terminal Water at Rutile(110)-Water Interfaces. The Journal of Physical Chemistry C 127, 10532–10540, https://doi.org/10.1021/acs.jpcc.3c01870 (2023).
Google Scholar
Li, X.-Y. et al. Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces. The Journal of Physical Chemistry Letters 12, 7299–7304, https://doi.org/10.1021/acs.jpclett.1c02001 (2021).
Google Scholar
Zeng, Z. et al. Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations. Nature Communications 14, 6131, https://doi.org/10.1038/s41467-023-41865-8 (2023).
Google Scholar
Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. Packmol: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry 30, 2157–2164 (2009).
Google Scholar
Berendsen, H. J., Grigera, J.-R. & Straatsma, T. P. The missing term in effective pair potentials. Journal of Physical Chemistry 91, 6269–6271 (1987).
Google Scholar
Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package – Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 152, 194103, https://doi.org/10.1063/5.0007045 (2020).
Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 77, 3865–3868, https://doi.org/10.1103/physrevlett.77.3865 (1996).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 132, 154104, https://doi.org/10.1063/1.3382344 (2010).
Google Scholar
VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. The Journal of Chemical Physics 127, 114105, https://doi.org/10.1063/1.2770708 (2007).
Google Scholar
Lippert, G., Hutter, J. & Parrinello, M. A hybrid gaussian and plane wave density functional scheme. Molecular Physics 92, 477–487, https://doi.org/10.1080/00268979709482119 (1997).
Google Scholar
Goedecker, S., Teter, M. & Hutter, J. Separable dual-space gaussian pseudopotentials. Physical Review B 54, 1703–1710, https://doi.org/10.1103/physrevb.54.1703 (1996).
Google Scholar
VandeVondele, J. & Hutter, J. An efficient orbital transformation method for electronic structure calculations. The Journal of Chemical Physics 118, 4365–4369, https://doi.org/10.1063/1.1543154 (2003).
Google Scholar
Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Physical Review Letters 98, 066401, https://doi.org/10.1103/physrevlett.98.066401 (2007).
Google Scholar
Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81, 511–519, https://doi.org/10.1063/1.447334 (1984).
Google Scholar
Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics 52, 255–268, https://doi.org/10.1080/00268978400101201 (1984).
Google Scholar
VandeVondele, J. et al. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. The Journal of Chemical Physics 122, 014515, https://doi.org/10.1063/1.1828433 (2005).
Google Scholar
Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171, https://doi.org/10.1016/j.cpc.2021.108171 (2022).
Google Scholar
Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Computer Physics Communications 228, 178–184, https://doi.org/10.1016/j.cpc.2018.03.016 (2018).
Google Scholar
Zhang, L. et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Bengio, S. et al. (eds.) Advances in Neural Information Processing Systems, vol. 31 (Curran Associates, Inc., 2018).
Zeng, J. et al. DeePMD-kit v2: A software package for deep potential models. The Journal of Chemical Physics 159, 054801, https://doi.org/10.1063/5.0155600 (2023).
Google Scholar
Zhang, L., Lin, D.-Y., Wang, H., Car, R. & E, W. Active learning of uniformly accurate interatomic potentials for materials simulation. Physical Review Materials 3, 023804, https://doi.org/10.1103/physrevmaterials.3.023804 (2019).
Google Scholar
Zhang, Y. et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Computer Physics Communications 253, 107206, https://doi.org/10.1016/j.cpc.2020.107206 (2020).
Google Scholar
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry 32, 2319–2327, https://doi.org/10.1002/jcc.21787 (2011).
Google Scholar
Cheng, J. & Sprik, M. Aligning electronic energy levels at the TiO2/H2O interface. Physical Review B 82, 081406, https://doi.org/10.1103/physrevb.82.081406 (2010).
Google Scholar
Cheng, J. & Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Physical Chemistry Chemical Physics 14, 11245–11267, https://doi.org/10.1039/c2cp41652b (2012).
Google Scholar
Jia, M., Zhang, C., Cox, S. J., Sprik, M. & Cheng, J. Computing Surface Acidity Constants of Proton Hopping Groups from Density Functional Theory-Based Molecular Dynamics: Application to the SnO2(110)/H2O Interface. Journal of Chemical Theory and Computation 16, 6520–6527, https://doi.org/10.1021/acs.jctc.0c00021 (2020).
Google Scholar
Zhuang, Y.-B. & Cheng, J. Band Alignment of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics. Journal of Electrochemistry https://doi.org/10.13208/j.electrochem.2216001 (2022).
Li, J.-Q., Sun, Y. & Cheng, J. Theoretical investigation on water adsorption conformations at aqueous anatase TiO2/water interfaces. Journal of Materials Chemistry A 11, 943–952, https://doi.org/10.1039/d2ta07994a (2022).
Google Scholar
Li, J.-Q., Hu, J.-Y. & Cheng, J. Water effect on the band edges of anatase TiO2 surfaces: A theoretical study on charge migration across surface heterojunctions and facet-dependent photoactivity. Physical Chemistry Chemical Physics 25, 29143–29154, https://doi.org/10.1039/d3cp03662f (2023).
Google Scholar
Andrade, M. F. C., Ko, H.-Y., Car, R. & Selloni, A. Structure, Polarization, and Sum Frequency Generation Spectrum of Interfacial Water on Anatase TiO2. The Journal of Physical Chemistry Letters 9, 6716–6721, https://doi.org/10.1021/acs.jpclett.8b03103 (2018).
Google Scholar
Raman, A. S. & Selloni, A. Acid-Base Chemistry of a Model IrO2 Catalytic Interface. The Journal of Physical Chemistry Letters 14, 7787–7794, https://doi.org/10.1021/acs.jpclett.3c02001 (2023).
Google Scholar
Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces. Physical Review Letters 113, 176802, https://doi.org/10.1103/physrevlett.113.176802 (2014).
Google Scholar
Ambrosio, F., Wiktor, J. & Pasquarello, A. pH-Dependent Catalytic Reaction Pathway for Water Splitting at the BiVO4-Water Interface from the Band Alignment. ACS Energy Letters 3, 829–834, https://doi.org/10.1021/acsenergylett.8b00104 (2018).
Google Scholar
Ambrosio, F., Wiktor, J. & Pasquarello, A. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface. ACS Applied Materials & Interfaces 10, 10011–10021, https://doi.org/10.1021/acsami.7b16545 (2018).
Google Scholar
Quaranta, V., Hellström, M. & Behler, J. Proton-Transfer Mechanisms at the Water-ZnO Interface: The Role of Presolvation. The Journal of Physical Chemistry Letters 8, 1476–1483, https://doi.org/10.1021/acs.jpclett.7b00358 (2017).
Google Scholar
Quaranta, V. et al. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(10ī0) interface from a high-dimensional neural network potential. The Journal of Chemical Physics 148, 241720, https://doi.org/10.1063/1.5012980 (2018).
Google Scholar
Quaranta, V., Behler, J. & Hellström, M. Structure and Dynamics of the Liquid-Water/Zinc-Oxide Interface from Machine Learning Potential Simulations. The Journal of Physical Chemistry C 123, 1293–1304, https://doi.org/10.1021/acs.jpcc.8b10781 (2019).
Google Scholar
Hellström, M., Quaranta, V. & Behler, J. One-dimensional vs. two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces. Chemical Science 10, 1232–1243, https://doi.org/10.1039/c8sc03033b (2018).
Google Scholar
Tocci, G. & Michaelides, A. Solvent-induced proton hopping at a water-oxide interface. The Journal of Physical Chemistry Letters 5, 474–480, https://doi.org/10.1021/jz402646c (2014).
Google Scholar
Liu, L.-M., Zhang, C., Thornton, G. & Michaelides, A. Structure and dynamics of liquid water on rutile TiO2(110). Physical Review B 82, 161415, https://doi.org/10.1103/physrevb.82.161415 (2010).
Google Scholar
Le, J., Iannuzzi, M., Cuesta, A. & Cheng, J. Determining Potentials of Zero Charge of Metal Electrodes versus the Standard Hydrogen Electrode from Density-Functional-Theory-Based Molecular Dynamics. Physical Review Letters 119, 016801, https://doi.org/10.1103/physrevlett.119.016801 (2017).
Google Scholar
Le, J., Fan, Q., Perez-Martinez, L., Cuesta, A. & Cheng, J. Theoretical insight into the vibrational spectra of metal-water interfaces from density functional theory based molecular dynamics. Physical Chemistry Chemical Physics 20, 11554–11558, https://doi.org/10.1039/c8cp00615f (2018).
Google Scholar
Le, J.-B. et al. Modeling Electrified Pt(111)-Had/Water Interfaces from Ab Initio Molecular Dynamics. JACS Au 1, 569–577, https://doi.org/10.1021/jacsau.1c00108 (2021).
Google Scholar
Le, J.-B., Yang, X.-H., Zhuang, Y.-B., Jia, M. & Cheng, J. Recent Progress toward Ab Initio Modeling of Electrocatalysis. The Journal of Physical Chemistry Letters 12, 8924–8931, https://doi.org/10.1021/acs.jpclett.1c02086 (2021).
Google Scholar
Chen, A., Le, J.-B., Kuang, Y. & Cheng, J. Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics. The Journal of Chemical Physics 157, 094702, https://doi.org/10.1063/5.0100678 (2022).
Google Scholar
Li, L., Liu, Y.-P., Le, J.-B. & Cheng, J. Unraveling molecular structures and ion effects of electric double layers at metal water interfaces. Cell Reports Physical Science 3, 100759, https://doi.org/10.1016/j.xcrp.2022.100759 (2022).
Google Scholar
Zhu, J.-X., Le, J.-B., Koper, M. T. M., Doblhoff-Dier, K. & Cheng, J. Effects of Adsorbed OH on Pt(100)/Water Interfacial Structures and Potential. The Journal of Physical Chemistry C 125, 21571–21579, https://doi.org/10.1021/acs.jpcc.1c04895 (2021).
Google Scholar
Natarajan, S. K. & Behler, J. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces. Physical Chemistry Chemical Physics 18, 28704–28725, https://doi.org/10.1039/c6cp05711j (2016).
Google Scholar
Natarajan, S. K. & Behler, J. Self-Diffusion of Surface Defects at Copper-Water Interfaces. The Journal of Physical Chemistry C 121, 4368–4383, https://doi.org/10.1021/acs.jpcc.6b12657 (2017).
Google Scholar
Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nature Materials 11, 667–674, https://doi.org/10.1038/nmat3354 (2012).
Google Scholar
Wen, X., Fan, X.-T., Jin, X. & Cheng, J. Band Alignment of 2D Material-Water Interfaces. The Journal of Physical Chemistry C 127, 4132–4143, https://doi.org/10.1021/acs.jpcc.3c00220 (2023).
Google Scholar
Li, L., Andrade, M. F. C., Car, R., Selloni, A. & Carter, E. A. Characterizing Structure-Dependent TiS2/Water Interfaces Using Deep-Neural-Network-Assisted Molecular Dynamics. The Journal of Physical Chemistry C 127, 9750–9758, https://doi.org/10.1021/acs.jpcc.2c08581 (2023).
Google Scholar
Fan, X.-T., Jia, M., Lee, M.-H. & Cheng, J. Water effect on band alignment of GaP: A theoretical insight into pyridinium catalyzed CO2 reduction. Journal of Energy Chemistry 26, 724–729, https://doi.org/10.1016/j.jechem.2017.03.002 (2017).
Google Scholar
Fan, X.-T., Wen, X.-J. & Cheng, J. Aligning Electronic Energy Levels in Pyridine-Assisted CO2 Activation at the GaP(110)/Water Interface Using Ab Initio Molecular Dynamics. ACS Catalysis 12521–12529, https://doi.org/10.1021/acscatal.2c04121 (2022).
Yan, S., Wang, B. & Lin, H. Tracking the delocalized proton in concerted proton transfer in bulk water. Journal of Chemical Theory and Computation 19, 448–459 (2023).
Google Scholar
McGibbon, R. T. et al. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal 109, 1528–1532, https://doi.org/10.1016/j.bpj.2015.08.015 (2015).
Google Scholar
Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 14, 33–38, https://doi.org/10.1016/0263-7855(96)00018-5 (1996).
Google Scholar
Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography 44, 1272–1276, https://doi.org/10.1107/s0021889811038970 (2011).
Google Scholar