An artificial intelligence accelerated ab initio molecular dynamics dataset for electrochemical interfaces

Machine Learning


  • Wang, R., Klein, M. L., Carnevale, V. & Borguet, E. Investigations of water/oxide interfaces by molecular dynamics simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science 11, https://doi.org/10.1002/wcms.1537 (2021).

  • Jeanmairet, G., Rotenberg, B. & Salanne, M. Microscopic simulations of electrochemical double-layer capacitors. Chemical Reviews 122, 10860–10898, https://doi.org/10.1021/acs.chemrev.1c00925 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Björneholm, O. et al. Water at interfaces. Chemical Reviews 116, 7698–7726, https://doi.org/10.1021/acs.chemrev.6b00045 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sivula, K. & Krol, R. v. d. Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews Materials 1, 15010, https://doi.org/10.1038/natrevmats.2015.10 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fenter, P. & Sturchio, N. C. Mineral-water interfacial structures revealed by synchrotron x-ray scattering. Progress in Surface Science 77, 171–258 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Al-Abadleh, H. A. & Grassian, V. Ft-ir study of water adsorption on aluminum oxide surfaces. Langmuir 19, 341–347 (2003).

    Article 
    CAS 

    Google Scholar 

  • Xu, J., Chen, M., Zhang, C. & Wu, X. First-principles study of the infrared spectrum in liquid water from a systematically improved description of h-bond network. Physical Review B 99, 205123 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nature Materials 18, 697–701, https://doi.org/10.1038/s41563-019-0356-x (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perakis, F. et al. Vibrational spectroscopy and dynamics of water. Chemical reviews 116, 7590–7607 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrade, M. F. C., Ko, H.-Y., Zhang, L., Car, R. & Selloni, A. Free energy of proton transfer at the water-TiO2 interface from ab initio deep potential molecular dynamics. Chemical Science 11, 2335–2341, https://doi.org/10.1039/c9sc05116c (2020).

    Article 
    CAS 

    Google Scholar 

  • Guo, Z., Ambrosio, F., Chen, W., Gono, P. & Pasquarello, A. Alignment of Redox Levels at Semiconductor-Water Interfaces. Chemistry of Materials 30, 94–111, https://doi.org/10.1021/acs.chemmater.7b02619 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fan, X.-T., Wen, X.-J., Zhuang, Y.-B. & Cheng, J. Molecular insight into the GaP(110)-water interface using machine learning accelerated molecular dynamics. Journal of Energy Chemistry 82, 239–247, https://doi.org/10.1016/j.jechem.2023.03.013 (2023).

    Article 
    CAS 

    Google Scholar 

  • Hu, J.-Y., Zhuang, Y.-B. & Cheng, J. Band alignment of CoO(100)-water and CoO(111)-water interfaces accelerated by machine learning potentials. The Journal of Chemical Physics 161, 134110, https://doi.org/10.1063/5.0224137 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deringer, V. L. et al. Gaussian process regression for materials and molecules. Chemical Reviews 121, 10073–10141, https://doi.org/10.1021/acs.chemrev.1c00022 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Behler, J. Four generations of high-Dimensional neural network potentials. Chemical Reviews 121, 10037–10072, https://doi.org/10.1021/acs.chemrev.0c00868 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, T., Zhang, L., Wang, H., Weinan, E. & Srolovitz, D. J. Deep potentials for materials science. Materials Futures 1, 022601 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhuang, Y.-B. ElectroFace, https://doi.org/10.12463/AI4EC/8NPZZC (2024).

  • Zhu, J.-X., Cheng, J. & Doblhoff-Dier, K. Dielectric profile at the Pt(111)/water interface. The Journal of Chemical Physics 162, 024702, https://doi.org/10.1063/5.0239284 (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, M., Zhuang, Y.-B., Wang, F., Zhang, C. & Cheng, J. Water-mediated proton hopping mechanisms at the SnO2(110)/H2O interface from ab initio deep potential molecular dynamics. Precision Chemistry (2024).

  • Zhuang, Y.-B., Bi, R.-H. & Cheng, J. Resolving the odd-even oscillation of water dissociation at rutile TiO2(110)-water interface by machine learning accelerated molecular dynamics. The Journal of Chemical Physics 157, 164701, https://doi.org/10.1063/5.0126333 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, Y.-B. & Cheng, J. Deciphering the Anomalous Acidic Tendency of Terminal Water at Rutile(110)-Water Interfaces. The Journal of Physical Chemistry C 127, 10532–10540, https://doi.org/10.1021/acs.jpcc.3c01870 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, X.-Y. et al. Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces. The Journal of Physical Chemistry Letters 12, 7299–7304, https://doi.org/10.1021/acs.jpclett.1c02001 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeng, Z. et al. Mechanistic insight on water dissociation on pristine low-index TiO2 surfaces from machine learning molecular dynamics simulations. Nature Communications 14, 6131, https://doi.org/10.1038/s41467-023-41865-8 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. Packmol: A package for building initial configurations for molecular dynamics simulations. Journal of computational chemistry 30, 2157–2164 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Berendsen, H. J., Grigera, J.-R. & Straatsma, T. P. The missing term in effective pair potentials. Journal of Physical Chemistry 91, 6269–6271 (1987).

    Article 
    CAS 

    Google Scholar 

  • Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package – Quickstep: Efficient and accurate electronic structure calculations. The Journal of Chemical Physics 152, 194103, https://doi.org/10.1063/5.0007045 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Physical Review Letters 77, 3865–3868, https://doi.org/10.1103/physrevlett.77.3865 (1996).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics 132, 154104, https://doi.org/10.1063/1.3382344 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. The Journal of Chemical Physics 127, 114105, https://doi.org/10.1063/1.2770708 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Lippert, G., Hutter, J. & Parrinello, M. A hybrid gaussian and plane wave density functional scheme. Molecular Physics 92, 477–487, https://doi.org/10.1080/00268979709482119 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goedecker, S., Teter, M. & Hutter, J. Separable dual-space gaussian pseudopotentials. Physical Review B 54, 1703–1710, https://doi.org/10.1103/physrevb.54.1703 (1996).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • VandeVondele, J. & Hutter, J. An efficient orbital transformation method for electronic structure calculations. The Journal of Chemical Physics 118, 4365–4369, https://doi.org/10.1063/1.1543154 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Physical Review Letters 98, 066401, https://doi.org/10.1103/physrevlett.98.066401 (2007).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. The Journal of Chemical Physics 81, 511–519, https://doi.org/10.1063/1.447334 (1984).

    Article 
    ADS 

    Google Scholar 

  • Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Molecular Physics 52, 255–268, https://doi.org/10.1080/00268978400101201 (1984).

    Article 
    ADS 

    Google Scholar 

  • VandeVondele, J. et al. The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. The Journal of Chemical Physics 122, 014515, https://doi.org/10.1063/1.1828433 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171, https://doi.org/10.1016/j.cpc.2021.108171 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics. Computer Physics Communications 228, 178–184, https://doi.org/10.1016/j.cpc.2018.03.016 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, L. et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems. In Bengio, S. et al. (eds.) Advances in Neural Information Processing Systems, vol. 31 (Curran Associates, Inc., 2018).

  • Zeng, J. et al. DeePMD-kit v2: A software package for deep potential models. The Journal of Chemical Physics 159, 054801, https://doi.org/10.1063/5.0155600 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L., Lin, D.-Y., Wang, H., Car, R. & E, W. Active learning of uniformly accurate interatomic potentials for materials simulation. Physical Review Materials 3, 023804, https://doi.org/10.1103/physrevmaterials.3.023804 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Computer Physics Communications 253, 107206, https://doi.org/10.1016/j.cpc.2020.107206 (2020).

    Article 
    MathSciNet 
    CAS 

    Google Scholar 

  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry 32, 2319–2327, https://doi.org/10.1002/jcc.21787 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, J. & Sprik, M. Aligning electronic energy levels at the TiO2/H2O interface. Physical Review B 82, 081406, https://doi.org/10.1103/physrevb.82.081406 (2010).

    Article 
    ADS 

    Google Scholar 

  • Cheng, J. & Sprik, M. Alignment of electronic energy levels at electrochemical interfaces. Physical Chemistry Chemical Physics 14, 11245–11267, https://doi.org/10.1039/c2cp41652b (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jia, M., Zhang, C., Cox, S. J., Sprik, M. & Cheng, J. Computing Surface Acidity Constants of Proton Hopping Groups from Density Functional Theory-Based Molecular Dynamics: Application to the SnO2(110)/H2O Interface. Journal of Chemical Theory and Computation 16, 6520–6527, https://doi.org/10.1021/acs.jctc.0c00021 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhuang, Y.-B. & Cheng, J. Band Alignment of Metal/Oxides-Water Interfaces Using Ab Initio Molecular Dynamics. Journal of Electrochemistry https://doi.org/10.13208/j.electrochem.2216001 (2022).

  • Li, J.-Q., Sun, Y. & Cheng, J. Theoretical investigation on water adsorption conformations at aqueous anatase TiO2/water interfaces. Journal of Materials Chemistry A 11, 943–952, https://doi.org/10.1039/d2ta07994a (2022).

    Article 
    CAS 

    Google Scholar 

  • Li, J.-Q., Hu, J.-Y. & Cheng, J. Water effect on the band edges of anatase TiO2 surfaces: A theoretical study on charge migration across surface heterojunctions and facet-dependent photoactivity. Physical Chemistry Chemical Physics 25, 29143–29154, https://doi.org/10.1039/d3cp03662f (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Andrade, M. F. C., Ko, H.-Y., Car, R. & Selloni, A. Structure, Polarization, and Sum Frequency Generation Spectrum of Interfacial Water on Anatase TiO2. The Journal of Physical Chemistry Letters 9, 6716–6721, https://doi.org/10.1021/acs.jpclett.8b03103 (2018).

    Article 
    CAS 

    Google Scholar 

  • Raman, A. S. & Selloni, A. Acid-Base Chemistry of a Model IrO2 Catalytic Interface. The Journal of Physical Chemistry Letters 14, 7787–7794, https://doi.org/10.1021/acs.jpclett.3c02001 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kharche, N., Muckerman, J. T. & Hybertsen, M. S. First-Principles Approach to Calculating Energy Level Alignment at Aqueous Semiconductor Interfaces. Physical Review Letters 113, 176802, https://doi.org/10.1103/physrevlett.113.176802 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Ambrosio, F., Wiktor, J. & Pasquarello, A. pH-Dependent Catalytic Reaction Pathway for Water Splitting at the BiVO4-Water Interface from the Band Alignment. ACS Energy Letters 3, 829–834, https://doi.org/10.1021/acsenergylett.8b00104 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ambrosio, F., Wiktor, J. & Pasquarello, A. pH-Dependent Surface Chemistry from First Principles: Application to the BiVO4(010)-Water Interface. ACS Applied Materials & Interfaces 10, 10011–10021, https://doi.org/10.1021/acsami.7b16545 (2018).

    Article 
    CAS 

    Google Scholar 

  • Quaranta, V., Hellström, M. & Behler, J. Proton-Transfer Mechanisms at the Water-ZnO Interface: The Role of Presolvation. The Journal of Physical Chemistry Letters 8, 1476–1483, https://doi.org/10.1021/acs.jpclett.7b00358 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quaranta, V. et al. Maximally resolved anharmonic OH vibrational spectrum of the water/ZnO(10ī0) interface from a high-dimensional neural network potential. The Journal of Chemical Physics 148, 241720, https://doi.org/10.1063/1.5012980 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Quaranta, V., Behler, J. & Hellström, M. Structure and Dynamics of the Liquid-Water/Zinc-Oxide Interface from Machine Learning Potential Simulations. The Journal of Physical Chemistry C 123, 1293–1304, https://doi.org/10.1021/acs.jpcc.8b10781 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hellström, M., Quaranta, V. & Behler, J. One-dimensional vs. two-dimensional proton transport processes at solid-liquid zinc-oxide-water interfaces. Chemical Science 10, 1232–1243, https://doi.org/10.1039/c8sc03033b (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tocci, G. & Michaelides, A. Solvent-induced proton hopping at a water-oxide interface. The Journal of Physical Chemistry Letters 5, 474–480, https://doi.org/10.1021/jz402646c (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, L.-M., Zhang, C., Thornton, G. & Michaelides, A. Structure and dynamics of liquid water on rutile TiO2(110). Physical Review B 82, 161415, https://doi.org/10.1103/physrevb.82.161415 (2010).

    Article 
    ADS 

    Google Scholar 

  • Le, J., Iannuzzi, M., Cuesta, A. & Cheng, J. Determining Potentials of Zero Charge of Metal Electrodes versus the Standard Hydrogen Electrode from Density-Functional-Theory-Based Molecular Dynamics. Physical Review Letters 119, 016801, https://doi.org/10.1103/physrevlett.119.016801 (2017).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Le, J., Fan, Q., Perez-Martinez, L., Cuesta, A. & Cheng, J. Theoretical insight into the vibrational spectra of metal-water interfaces from density functional theory based molecular dynamics. Physical Chemistry Chemical Physics 20, 11554–11558, https://doi.org/10.1039/c8cp00615f (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le, J.-B. et al. Modeling Electrified Pt(111)-Had/Water Interfaces from Ab Initio Molecular Dynamics. JACS Au 1, 569–577, https://doi.org/10.1021/jacsau.1c00108 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Le, J.-B., Yang, X.-H., Zhuang, Y.-B., Jia, M. & Cheng, J. Recent Progress toward Ab Initio Modeling of Electrocatalysis. The Journal of Physical Chemistry Letters 12, 8924–8931, https://doi.org/10.1021/acs.jpclett.1c02086 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, A., Le, J.-B., Kuang, Y. & Cheng, J. Modeling stepped Pt/water interfaces at potential of zero charge with ab initio molecular dynamics. The Journal of Chemical Physics 157, 094702, https://doi.org/10.1063/5.0100678 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L., Liu, Y.-P., Le, J.-B. & Cheng, J. Unraveling molecular structures and ion effects of electric double layers at metal water interfaces. Cell Reports Physical Science 3, 100759, https://doi.org/10.1016/j.xcrp.2022.100759 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhu, J.-X., Le, J.-B., Koper, M. T. M., Doblhoff-Dier, K. & Cheng, J. Effects of Adsorbed OH on Pt(100)/Water Interfacial Structures and Potential. The Journal of Physical Chemistry C 125, 21571–21579, https://doi.org/10.1021/acs.jpcc.1c04895 (2021).

    Article 
    CAS 

    Google Scholar 

  • Natarajan, S. K. & Behler, J. Neural network molecular dynamics simulations of solid-liquid interfaces: water at low-index copper surfaces. Physical Chemistry Chemical Physics 18, 28704–28725, https://doi.org/10.1039/c6cp05711j (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Natarajan, S. K. & Behler, J. Self-Diffusion of Surface Defects at Copper-Water Interfaces. The Journal of Physical Chemistry C 121, 4368–4383, https://doi.org/10.1021/acs.jpcc.6b12657 (2017).

    Article 
    CAS 

    Google Scholar 

  • Carrasco, J., Hodgson, A. & Michaelides, A. A molecular perspective of water at metal interfaces. Nature Materials 11, 667–674, https://doi.org/10.1038/nmat3354 (2012).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Wen, X., Fan, X.-T., Jin, X. & Cheng, J. Band Alignment of 2D Material-Water Interfaces. The Journal of Physical Chemistry C 127, 4132–4143, https://doi.org/10.1021/acs.jpcc.3c00220 (2023).

    Article 
    CAS 

    Google Scholar 

  • Li, L., Andrade, M. F. C., Car, R., Selloni, A. & Carter, E. A. Characterizing Structure-Dependent TiS2/Water Interfaces Using Deep-Neural-Network-Assisted Molecular Dynamics. The Journal of Physical Chemistry C 127, 9750–9758, https://doi.org/10.1021/acs.jpcc.2c08581 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fan, X.-T., Jia, M., Lee, M.-H. & Cheng, J. Water effect on band alignment of GaP: A theoretical insight into pyridinium catalyzed CO2 reduction. Journal of Energy Chemistry 26, 724–729, https://doi.org/10.1016/j.jechem.2017.03.002 (2017).

    Article 

    Google Scholar 

  • Fan, X.-T., Wen, X.-J. & Cheng, J. Aligning Electronic Energy Levels in Pyridine-Assisted CO2 Activation at the GaP(110)/Water Interface Using Ab Initio Molecular Dynamics. ACS Catalysis 12521–12529, https://doi.org/10.1021/acscatal.2c04121 (2022).

  • Yan, S., Wang, B. & Lin, H. Tracking the delocalized proton in concerted proton transfer in bulk water. Journal of Chemical Theory and Computation 19, 448–459 (2023).

    Article 
    CAS 

    Google Scholar 

  • McGibbon, R. T. et al. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal 109, 1528–1532, https://doi.org/10.1016/j.bpj.2015.08.015 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. Journal of Molecular Graphics 14, 33–38, https://doi.org/10.1016/0263-7855(96)00018-5 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography 44, 1272–1276, https://doi.org/10.1107/s0021889811038970 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *