IPCC: Summary for Policymakers. In Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2023).
Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).
Google Scholar
Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).
Google Scholar
Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).
Google Scholar
Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).
Google Scholar
DeAngelo, J. et al. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 12, 6096 (2021).
Google Scholar
McCollum, D. L. et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).
Google Scholar
Arneth, A., Brown, C. & Rounsevell, M. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Change 4, 550–557 (2014).
Google Scholar
Chowdhury, A. K. et al. Hydropower expansion in eco-sensitive river basins under global energy-economic change. Nat. Sustain. 7, 213–222 (2024).
Google Scholar
Ou, Y. et al. Can updated climate pledges limit warming well below 2 °C? Science 374, 693–695 (2021).
Google Scholar
Clarke, L. et al. in IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).
Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).
Google Scholar
Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 11, 115–137 (2017).
Weyant, J. P. A perspective on integrated assessment. Clim. Change 95, 317–323 (2009).
Google Scholar
Krey, V. Global energy‐climate scenarios and models: a review. Wiley Interdiscip. Rev.: Energy Environ. 3, 363–383 (2014).
Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).
Google Scholar
Kanyako, F. et al. Compounding uncertainties in economic and population growth increase tail risks for relevant outcomes across sectors. Earth’s Future 12, e2023EF003930 (2024).
Google Scholar
Gillingham, K. et al. Modeling uncertainty in integrated assessment of climate change: a multimodel comparison. J. Assoc. Environ. Reso. 5, 791–826 (2018).
Riahi, K. et al. Cost and attainability of meeting stringent climate targets without overshoot. Nat. Clim. Change 11, 1063–1069 (2021).
Google Scholar
O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).
Google Scholar
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
Google Scholar
Rosenzweig, C. et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).
Google Scholar
van de Ven, D.-J. et al. A multimodel analysis of post-Glasgow climate targets and feasibility challenges. Nat. Clim. Change 13, 570–578 (2023).
Google Scholar
Harmsen, M. et al. Integrated assessment model diagnostics: key indicators and model evolution. Environ. Res. Lett. 16, 054046 (2021).
Google Scholar
Guivarch, C. et al. Using large ensembles of climate change mitigation scenarios for robust insights. Nat. Clim. Change 12, 428–435 (2022).
Google Scholar
Huppmann, D. et al. IAMC 1.5 °C scenario explorer and data hosted by IIASA. Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis https://doi.org/10.22022/SR15/08-2018.15429 (2018).
Byers, E. et al. AR6 Scenarios Database. Zenodo https://doi.org/10.5281/zenodo.7197970 (2022).
Dekker, M. M. et al. Spread in climate policy scenarios unravelled. Nature 624, 309–316 (2023).
Google Scholar
IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).
Guivarch, C. et al. Annex III: Scenarios and Modelling Methods (IPCC, 2022).
Cointe, B. The AR6 scenario explorer and the history of IPCC scenarios databases: evolutions and challenges for transparency, pluralism and policy-relevance. npj Clim. Action 3, 3 (2024).
Google Scholar
Dekker, M. M. et al. Identifying energy model fingerprints in mitigation scenarios. Nat. Energy 8, 1395–1404 (2023).
Google Scholar
van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).
Google Scholar
Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).
Google Scholar
Gambhir, A., Ganguly, G. & Mittal, S. Climate change mitigation scenario databases should incorporate more non-IAM pathways. Joule 6, 2663–2667 (2022).
Google Scholar
Hickel, J. et al. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 6, 766–768 (2021).
Google Scholar
Pirani, A. et al. Scenarios in IPCC assessments: lessons from AR6 and opportunities for AR7. npj Clim. Action 3, 1 (2024).
Google Scholar
Sengupta, S. et al. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl.-Based Syst. 194, 105596 (2020).
Google Scholar
Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).
Google Scholar
Qiu, J., Wu, Q., Ding, G., Xu, Y. & Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 67 (2016).
Google Scholar
Buster, G., Benton, B. N., Glaws, A. & King, R. N. High-resolution meteorology with climate change impacts from global climate model data using generative machine learning. Nat. Energy 9, 894–906 (2024).
Price, I. et al. Probabilistic weather forecasting with machine learning. Nature 637, 84–90 (2025).
Google Scholar
Grossmann, I. et al. AI and the transformation of social science research. Science 380, 1108–1109 (2023).
Google Scholar
Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations (2014).
Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014).
Mirza, M. & Osindero, S. Conditional generative adversarial nets. Preprint at https://arxiv.org/abs/1411.1784 (2014).
Li, Q. et al. Coupled GAN with relativistic discriminators for infrared and visible images fusion. IEEE Sens. J. 21, 7458–7467 (2019).
Google Scholar
Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).
Google Scholar
Scher, S. Toward data‐driven weather and climate forecasting: approximating a simple general circulation model with deep learning. Geophys. Res. Lett. 45, 12,616–12,622 (2018).
Google Scholar
Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).
Google Scholar
Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).
Google Scholar
Khodayar, M., Liu, G., Wang, J. & Khodayar, M. E. Deep learning in power systems research: a review. CSEE J. Power Energy Syst. 7, 209–220 (2020).
Ozcanli, A. K., Yaprakdal, F. & Baysal, M. Deep learning methods and applications for electrical power systems: a comprehensive review. Int. J. Energy Res. 44, 7136–7157 (2020).
Google Scholar
Wang, H., Lei, Z., Zhang, X., Zhou, B. & Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 198, 111799 (2019).
Google Scholar
Aslam, S. et al. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 144, 110992 (2021).
Google Scholar
Almalaq, A. & Edwards, G. A review of deep learning methods applied on load forecasting. In 16th IEEE International Conference on Machine Learning and Applications (ICMLA) 511–516 (IEEE, 2017).
Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Change 11, 966–972 (2021).
Google Scholar
Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surv. 55, 42 (2022).
Clutton-Brock, P., Rolnick, D., Donti, P. L. & Kaack, L. Climate Change and AI: Recommendations for Government Action (GPAI, 2021).
Debnath, R., Creutzig, F., Sovacool, B. K. & Shuckburgh, E. Harnessing human and machine intelligence for planetary-level climate action. npj Clim. Action 2, 20 (2023).
Google Scholar
Al Khourdajie, A., Skea, J. & Green, R. Climate ambition, background scenario or the model? Attribution of the variance of energy-related indicators in global scenarios. Energy Clim. Change 5, 100126 (2024).
Google Scholar
Li, P.-H., Pye, S., Keppo, I., Jaxa-Rozen, M. & Trutnevyte, E. Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques. Clim. Change 176, 80 (2023).
Google Scholar
Riahi, K. & Krey, V. Shared Socioeconomic Pathways Scenario Database (SSP). IIASA https://iiasa.ac.at/models-tools-data/ssp (2024).
van Vuuren, D. et al. The Scenario Model Intercomparison Project for CMIP7 (ScenarioMIP-CMIP7). Preprint at https://doi.org/10.5194/egusphere-2024-3765 (2025).
Wong, C. How AI is improving climate forecasts. Nature 628, 710–712 (2024).
Google Scholar
Harder, P. The Role of AI in Responding to Climate Challenges. In Proceedings of AAAI 2022 Fall Symposium (AAAI Press, 2022).
Kikstra, J. S. et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geosci. Model Dev. 15, 9075–9109 (2022).
Google Scholar
Berndt, D. J. & Clifford, J. Using dynamic time warping to find patterns in time series. In Proc. 3rd International Conference on Knowledge Discovery and Data Mining 359–370 (AAAI Press, 1994).
McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).
Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4768–4777 (2017).
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).
Nikitin, A., Iannucci, L. & Kaski, S. TSGM: a flexible framework for generative modeling of synthetic time series. Adv. Neural Inf. Process. Syst. 37, 129042–129061 (2024).
Farahani, A., Voghoei, S., Rasheed, K. & Arabnia, H. R. A brief review of domain adaptation. In Advances in Data Science and Information Engineering. Proceedings from ICDATA 2020 and IKE 2020 (eds Stahlbock, R. et al.) 877–894 (Springer, 2021).
Zhu, R. 30,000 Synthetic scenarios in “Using deep learning to generate key variables in global mitigation scenarios”. Zenodo https://doi.org/10.5281/zenodo.15240553 (2025).
Li, P. Anderson111-maker/Deep-IAM: code availablity for NCC (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.15280653 (2025).
