Using deep learning to generate key variables in global mitigation scenarios

Machine Learning


  • IPCC: Summary for Policymakers. In Climate Change 2023: Synthesis Report (eds Core Writing Team et al.) (IPCC, 2023).

  • Hoegh-Guldberg, O. et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 365, eaaw6974 (2019).

    Article 
    CAS 

    Google Scholar 

  • Lade, S. J. et al. Human impacts on planetary boundaries amplified by Earth system interactions. Nat. Sustain. 3, 119–128 (2020).

    Article 

    Google Scholar 

  • Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar 

  • Luderer, G. et al. Impact of declining renewable energy costs on electrification in low-emission scenarios. Nat. Energy 7, 32–42 (2022).

    Article 

    Google Scholar 

  • DeAngelo, J. et al. Energy systems in scenarios at net-zero CO2 emissions. Nat. Commun. 12, 6096 (2021).

    Article 
    CAS 

    Google Scholar 

  • McCollum, D. L. et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).

    Article 

    Google Scholar 

  • Arneth, A., Brown, C. & Rounsevell, M. Global models of human decision-making for land-based mitigation and adaptation assessment. Nat. Clim. Change 4, 550–557 (2014).

    Article 

    Google Scholar 

  • Chowdhury, A. K. et al. Hydropower expansion in eco-sensitive river basins under global energy-economic change. Nat. Sustain. 7, 213–222 (2024).

    Article 

    Google Scholar 

  • Ou, Y. et al. Can updated climate pledges limit warming well below 2 °C? Science 374, 693–695 (2021).

    Article 
    CAS 

    Google Scholar 

  • Clarke, L. et al. in IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (Cambridge Univ. Press, 2014).

  • Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    Article 
    CAS 

    Google Scholar 

  • Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 11, 115–137 (2017).

  • Weyant, J. P. A perspective on integrated assessment. Clim. Change 95, 317–323 (2009).

    Article 

    Google Scholar 

  • Krey, V. Global energy‐climate scenarios and models: a review. Wiley Interdiscip. Rev.: Energy Environ. 3, 363–383 (2014).

    Google Scholar 

  • Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620, 47–60 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kanyako, F. et al. Compounding uncertainties in economic and population growth increase tail risks for relevant outcomes across sectors. Earth’s Future 12, e2023EF003930 (2024).

    Article 

    Google Scholar 

  • Gillingham, K. et al. Modeling uncertainty in integrated assessment of climate change: a multimodel comparison. J. Assoc. Environ. Reso. 5, 791–826 (2018).

    Google Scholar 

  • Riahi, K. et al. Cost and attainability of meeting stringent climate targets without overshoot. Nat. Clim. Change 11, 1063–1069 (2021).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Change 10, 1074–1084 (2020).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 

    Google Scholar 

  • Rosenzweig, C. et al. The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    Article 

    Google Scholar 

  • van de Ven, D.-J. et al. A multimodel analysis of post-Glasgow climate targets and feasibility challenges. Nat. Clim. Change 13, 570–578 (2023).

    Article 

    Google Scholar 

  • Harmsen, M. et al. Integrated assessment model diagnostics: key indicators and model evolution. Environ. Res. Lett. 16, 054046 (2021).

    Article 

    Google Scholar 

  • Guivarch, C. et al. Using large ensembles of climate change mitigation scenarios for robust insights. Nat. Clim. Change 12, 428–435 (2022).

    Article 

    Google Scholar 

  • Huppmann, D. et al. IAMC 1.5 °C scenario explorer and data hosted by IIASA. Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis https://doi.org/10.22022/SR15/08-2018.15429 (2018).

  • Byers, E. et al. AR6 Scenarios Database. Zenodo https://doi.org/10.5281/zenodo.7197970 (2022).

  • Dekker, M. M. et al. Spread in climate policy scenarios unravelled. Nature 624, 309–316 (2023).

    Article 
    CAS 

    Google Scholar 

  • IPCC: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) (Cambridge Univ. Press, 2022).

  • Guivarch, C. et al. Annex III: Scenarios and Modelling Methods (IPCC, 2022).

  • Cointe, B. The AR6 scenario explorer and the history of IPCC scenarios databases: evolutions and challenges for transparency, pluralism and policy-relevance. npj Clim. Action 3, 3 (2024).

    Article 

    Google Scholar 

  • Dekker, M. M. et al. Identifying energy model fingerprints in mitigation scenarios. Nat. Energy 8, 1395–1404 (2023).

    Article 

    Google Scholar 

  • van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    Article 

    Google Scholar 

  • Keyßer, L. T. & Lenzen, M. 1.5 °C degrowth scenarios suggest the need for new mitigation pathways. Nat. Commun. 12, 2676 (2021).

    Article 

    Google Scholar 

  • Gambhir, A., Ganguly, G. & Mittal, S. Climate change mitigation scenario databases should incorporate more non-IAM pathways. Joule 6, 2663–2667 (2022).

    Article 

    Google Scholar 

  • Hickel, J. et al. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 6, 766–768 (2021).

    Article 

    Google Scholar 

  • Pirani, A. et al. Scenarios in IPCC assessments: lessons from AR6 and opportunities for AR7. npj Clim. Action 3, 1 (2024).

    Article 

    Google Scholar 

  • Sengupta, S. et al. A review of deep learning with special emphasis on architectures, applications and recent trends. Knowl.-Based Syst. 194, 105596 (2020).

    Article 

    Google Scholar 

  • Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article 

    Google Scholar 

  • Qiu, J., Wu, Q., Ding, G., Xu, Y. & Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 67 (2016).

    Article 

    Google Scholar 

  • Buster, G., Benton, B. N., Glaws, A. & King, R. N. High-resolution meteorology with climate change impacts from global climate model data using generative machine learning. Nat. Energy 9, 894–906 (2024).

  • Price, I. et al. Probabilistic weather forecasting with machine learning. Nature 637, 84–90 (2025).

    Article 
    CAS 

    Google Scholar 

  • Grossmann, I. et al. AI and the transformation of social science research. Science 380, 1108–1109 (2023).

    Article 
    CAS 

    Google Scholar 

  • Kingma, D. P. & Welling, M. Auto-encoding variational bayes. In 2nd International Conference on Learning Representations (2014).

  • Goodfellow, I. et al. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014).

    Google Scholar 

  • Mirza, M. & Osindero, S. Conditional generative adversarial nets. Preprint at https://arxiv.org/abs/1411.1784 (2014).

  • Li, Q. et al. Coupled GAN with relativistic discriminators for infrared and visible images fusion. IEEE Sens. J. 21, 7458–7467 (2019).

    Article 

    Google Scholar 

  • Rasp, S., Pritchard, M. S. & Gentine, P. Deep learning to represent subgrid processes in climate models. Proc. Natl Acad. Sci. USA 115, 9684–9689 (2018).

    Article 
    CAS 

    Google Scholar 

  • Scher, S. Toward data‐driven weather and climate forecasting: approximating a simple general circulation model with deep learning. Geophys. Res. Lett. 45, 12,616–12,622 (2018).

    Article 

    Google Scholar 

  • Bi, K. et al. Accurate medium-range global weather forecasting with 3D neural networks. Nature 619, 533–538 (2023).

    Article 
    CAS 

    Google Scholar 

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1421 (2023).

    Article 
    CAS 

    Google Scholar 

  • Khodayar, M., Liu, G., Wang, J. & Khodayar, M. E. Deep learning in power systems research: a review. CSEE J. Power Energy Syst. 7, 209–220 (2020).

    Google Scholar 

  • Ozcanli, A. K., Yaprakdal, F. & Baysal, M. Deep learning methods and applications for electrical power systems: a comprehensive review. Int. J. Energy Res. 44, 7136–7157 (2020).

    Article 

    Google Scholar 

  • Wang, H., Lei, Z., Zhang, X., Zhou, B. & Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 198, 111799 (2019).

    Article 

    Google Scholar 

  • Aslam, S. et al. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 144, 110992 (2021).

    Article 

    Google Scholar 

  • Almalaq, A. & Edwards, G. A review of deep learning methods applied on load forecasting. In 16th IEEE International Conference on Machine Learning and Applications (ICMLA) 511–516 (IEEE, 2017).

  • Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Change 11, 966–972 (2021).

    Article 

    Google Scholar 

  • Rolnick, D. et al. Tackling climate change with machine learning. ACM Comput. Surv. 55, 42 (2022).

    Google Scholar 

  • Clutton-Brock, P., Rolnick, D., Donti, P. L. & Kaack, L. Climate Change and AI: Recommendations for Government Action (GPAI, 2021).

  • Debnath, R., Creutzig, F., Sovacool, B. K. & Shuckburgh, E. Harnessing human and machine intelligence for planetary-level climate action. npj Clim. Action 2, 20 (2023).

    Article 

    Google Scholar 

  • Al Khourdajie, A., Skea, J. & Green, R. Climate ambition, background scenario or the model? Attribution of the variance of energy-related indicators in global scenarios. Energy Clim. Change 5, 100126 (2024).

    Article 
    CAS 

    Google Scholar 

  • Li, P.-H., Pye, S., Keppo, I., Jaxa-Rozen, M. & Trutnevyte, E. Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques. Clim. Change 176, 80 (2023).

    Article 

    Google Scholar 

  • Riahi, K. & Krey, V. Shared Socioeconomic Pathways Scenario Database (SSP). IIASA https://iiasa.ac.at/models-tools-data/ssp (2024).

  • van Vuuren, D. et al. The Scenario Model Intercomparison Project for CMIP7 (ScenarioMIP-CMIP7). Preprint at https://doi.org/10.5194/egusphere-2024-3765 (2025).

  • Wong, C. How AI is improving climate forecasts. Nature 628, 710–712 (2024).

    Article 
    CAS 

    Google Scholar 

  • Harder, P. The Role of AI in Responding to Climate Challenges. In Proceedings of AAAI 2022 Fall Symposium (AAAI Press, 2022).

  • Kikstra, J. S. et al. The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways: from emissions to global temperatures. Geosci. Model Dev. 15, 9075–9109 (2022).

    Article 

    Google Scholar 

  • Berndt, D. J. & Clifford, J. Using dynamic time warping to find patterns in time series. In Proc. 3rd International Conference on Knowledge Discovery and Data Mining 359–370 (AAAI Press, 1994).

  • McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at https://arxiv.org/abs/1802.03426 (2018).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4768–4777 (2017).

    Google Scholar 

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (Association for Computing Machinery, 2016).

  • Nikitin, A., Iannucci, L. & Kaski, S. TSGM: a flexible framework for generative modeling of synthetic time series. Adv. Neural Inf. Process. Syst. 37, 129042–129061 (2024).

    Google Scholar 

  • Farahani, A., Voghoei, S., Rasheed, K. & Arabnia, H. R. A brief review of domain adaptation. In Advances in Data Science and Information Engineering. Proceedings from ICDATA 2020 and IKE 2020 (eds Stahlbock, R. et al.) 877–894 (Springer, 2021).

  • Zhu, R. 30,000 Synthetic scenarios in “Using deep learning to generate key variables in global mitigation scenarios”. Zenodo https://doi.org/10.5281/zenodo.15240553 (2025).

  • Li, P. Anderson111-maker/Deep-IAM: code availablity for NCC (v1.0.0). Zenodo https://doi.org/10.5281/zenodo.15280653 (2025).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *