Use of machine learning to assess the prognostic utility of radiomic features for in-hospital COVID-19 mortality

Machine Learning


  • Centers for Disease Control and Prevention. CDC covid data tracker. https://covid.cdc.gov/covid-data-tracker/ (Accessed 13 June 2022) (2022).

  • Karim, S. S. A. & Karim, Q. A. Omicron sars-cov-2 variant: A new chapter in the covid-19 pandemic. Lancet 398(10317), 2126–2128 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kupferschmidt, K. & Wadman, M. Delta variant triggers new phase in the pandemic. Science 372(6549), 1375–1376 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McCue, C. et al. Long term outcomes of critically ill covid-19 pneumonia patients: Early learning. Intensive Care Med. 47(2), 240–241 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Michelen, M. et al. Characterising long term covid-19: A living systematic review. BMJ Glob. Health 6(9), e005427 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Jacobi, A. et al. Portable chest x-ray in coronavirus disease-19 (covid-19): A pictorial review. Clin. Imaging 64, 35–42 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. W. et al. The role of initial chest x-ray in triaging patients with suspected covid-19 during the pandemic. Emerg. Radiol. 27(6), 617–621 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akl, E. A. et al. Use of chest imaging in the diagnosis and management of covid-19: A who rapid advice guide. Radiology 298(2), E63–E69 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Borkowski, A. A. et al. Using artificial intelligence for covid-19 chest x-ray diagnosis. Fed. Pract. 37(9), 398–404 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Balbi, M. et al. Chest x-ray for predicting mortality and the need for ventilatory support in covid-19 patients presenting to the emergency department. Eur. Radiol. 31(4), 1999–2012 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maroldi, R. et al. Which role for chest x-ray score in predicting the outcome in covid-19 pneumonia?. Eur. Radiol. 31(6), 4016–4022 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monaco, C. G. et al. Chest x-ray severity score in covid-19 patients on emergency department admission: A two-centre study. Eur. Radiol. Exp. 4(1), 68 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hussain, L. et al. Machine-learning classification of texture features of portable chest x-ray accurately classifies covid-19 lung infection. Biomed. Eng. Online 19(1), 88 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ismael, A. M. & Şengür, A. Deep learning approaches for covid-19 detection based on chest x-ray images. Expert Syst. Appl. 164(114), 054 (2021).

    Google Scholar 

  • Salvatore, M. et al. A phenome-wide association study (phewas) of covid-19 outcomes by race using the electronic health records data in michigan medicine. J. Clin. Med. 10(7), 1351 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spector-Bagdady, K. et al. Coronavirus disease 2019 (covid-19) clinical trial oversight at a major academic medical center: Approach of michigan medicine. Clin. Infect. Dis. 71(16), 2187–2190 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nypaver, M. et al. The michigan emergency department improvement collaborative: A novel model for implementing large scale practice change in pediatric emergency care. Pediatrics 142(1 MeetingAbstract), 105 (2018).

    Article 

    Google Scholar 

  • Abbas, A., Abdelsamea, M. M. & Gaber, M. M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Appl. Intell. 51, 854–864 (2021).

    Article 

    Google Scholar 

  • Gupta, A. et al. Association between antecedent statin use and decreased mortality in hospitalized patients with COVID-19. Nat. Commun. 12(1), 1325 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, D. R. Regression models and life tables (with discussion). J. R. Stat. Soc. B 34(2), 187–220 (1972).

    MATH 

    Google Scholar 

  • Therneau, T. M. & Grambsch, P. M. Modeling survival data: Extending the Cox model. In The Cox Model 39–77 (Springer, 2000).

    MATH 

    Google Scholar 

  • Pölsterl, S., Navab, N. & Katouzian, A. An efficient training algorithm for kernel survival support vector machines. https://doi.org/10.48550/arXiv.1611.07054 (Preprint posted online November 21, 2016).

  • Ishwaran, H. et al. Random survival forests. Ann. Appl. Stat. 2(3), 841–860 (2008).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Hothorn, T. et al. Survival ensembles. Biostatistics 7(3), 355–373 (2006).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhou, Z. H. Ensemble Methods: Foundations and Algorithms (CRC Press, 2012).

    Book 

    Google Scholar 

  • Zwanenburg, A. et al. Image biomarker standardisation initiative. https://doi.org/10.48550/arXiv.1612.07003 (Preprint posted online December 21, 2016)

  • Harrell, F. E. et al. Evaluating the yield of medical tests. JAMA 247(18), 2543–2546 (1982).

    Article 
    PubMed 

    Google Scholar 

  • Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15(4), 361–387 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Holste, G. et al. End-to-end learning of fused image and non-image features for improved breast cancer classification from mri. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 3294–3303 (2021).

  • Zhou, H. et al. Diagnosis of distant metastasis of lung cancer: Based on clinical and radiomic features. Transl. Oncol. 11(1), 31–36 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Militello, C. et al. CT Radiomic Features and Clinical Biomarkers for Predicting Coronary Artery Disease. Cogn. Comput. 15(1), 238–253 (2023).

    Article 

    Google Scholar 

  • Huang, S. C. et al. Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: A case-study in pulmonary embolism detection. Sci. Rep. 10(1), 1–9 (2020).

    Article 

    Google Scholar 

  • Liu, Z. et al. Imaging genomics for accurate diagnosis and treatment of tumors: A cutting edge overview. Biomed. Pharmacother. 135, 111173 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tomaszewski, M. R. & Gillies, R. J. The biological meaning of radiomic features. Radiology 298(3), 505–516 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Brouqui, P. et al. Asymptomatic hypoxia in COVID-19 is associated with poor outcome. Int. J. Infect. Dis. 102, 233–238 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Struyf, T. et al. Cochrane COVID-19 Diagnostic Test Accuracy Group. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID‐19. Cochrane Database Syst. Rev. (5) (2022).

  • Garrafa, E. et al. Early prediction of in-hospital death of covid-19 patients: A machine-learning model based on age, blood analyses, and chest x-ray score. Elife 10, e70640 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schalekamp, S. et al. Model-based prediction of critical illness in hospitalized patients with covid-19. Radiology 298(1), E46–E54 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Soda, P. et al. Aiforcovid: Predicting the clinical outcomes in patients with covid-19 applying ai to chest-x-rays. An Italian multicentre study. Med. Image Anal. 74, 102216 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, B. et al. Initial chest radiograph scores inform covid-19 status, intensive care unit admission and need for mechanical ventilation. Clin. Radiol. 76(6), 473.e1-473.e7 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. Tumor heterogeneity assessed by texture analysis on contrast-enhanced CT in lung adenocarcinoma: Association with pathologic grade. Oncotarget 8(32), 53664–53674 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1–9 (2012).

    Google Scholar 

  • He, K. et al. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770–778 (2016).

  • Chandra, T. B. et al. Coronavirus disease (covid19) detection in chest x-ray images using majority voting based classifier ensemble. Expert Syst. Appl. 165(113), 909 (2021).

    Google Scholar 

  • Johri, S. et al. A novel machine learning-based analytical framework for automatic detection of covid-19 using chest x-ray images. Int. J. Imaging Syst. Technol. 31(3), 1105–1119 (2021).

    Article 

    Google Scholar 

  • Selvi, J. T., Subhashini, K. & Methini, M. Investigation of covid-19 chest x-ray images using texture features—A comprehensive approach. Computational 1, 45–58 (2021).

    MATH 

    Google Scholar 

  • van Griethuysen, J. J. M. et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q., Wu, Y. N. & Zhu, S. C. Interpretable convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8827–8836 (2018).

  • Varghese, B. A. et al. Predicting clinical outcomes in covid-19 using radiomics on chest radiographs. Br. J. Radiol. 94(1126), 20210221 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Iori, M. et al. Mortality prediction of COVID-19 patients using radiomic and neural network features extracted from a wide chest X-ray sample size: A robust approach for different medical imbalanced scenarios. Appl. Sci. 12(8), 3903 (2022).

    Article 
    CAS 

    Google Scholar 

  • Blain, M. et al. Determination of disease severity in covid-19 patients using deep learning in chest x-ray images. Diagn. Interv. Radiol. 27(1), 20–27 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Temporal radiographic changes in covid-19 patients: Relationship to disease severity and viral clearance. Sci. Rep. 10(1), 10263 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasin, R. & Gouda, W. Chest x-ray findings monitoring covid-19 disease course and severity. Egypt. J. Radiol. Nucl. Med. 51(1), 193 (2020).

    Article 

    Google Scholar 

  • Castelli, G. et al. Brief communication: Chest radiography score in young covid-19 patients: Does one size fit all?. PLoS ONE 17(2), e0264172 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quan, H. et al. Coding algorithms for defining comorbidities in icd-9-cm and icd-10 administrative data. Med. Care 43(11), 1130–1139 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Cau, R. et al. Long-COVID diagnosis: From diagnostic to advanced AI-driven models. Eur. J. Radiol. 148, 110164 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sudre, C. H. et al. Attributes and predictors of long COVID. Nat. Med. 27(4), 626–631 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiao, Z. et al. Prognostication of patients with covid-19 using artificial intelligence based on chest x-rays and clinical data: A retrospective study. Lancet Digit. Health 3(5), e286–e294 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alqahtani, J. S. et al. Prevalence, severity and mortality associated with copd and smoking in patients with covid-19: A rapid systematic review and meta-analysis. PLoS ONE 15(5), e0233147 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Centers for Disease Control and Prevention. Scientific evidence for conditions associated with higher risk for severe covid-19. https://www.cdc.gov/coronavirus/2019-ncov/science/sciencebriefs/underlying-evidence-table.html (Accessed 13 June 2022) (2022).

  • Ebinger, J. E. et al. Pre-existing traits associated with covid-19 illness severity. PLoS ONE 15(7), e0236240 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jordan, R. E., Adab, P. & Cheng, K. K. Covid-19: Risk factors for severe disease and death. BMJ 368, m1198 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Khan, M. M. A. et al. Effects of underlying morbidities on the occurrence of deaths in covid-19 patients: A systematic review and meta-analysis. J. Glob. Health 10(2), 020503 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, L. et al. Risk factors for intensive care unit admission and in-hospital mortality among hospitalized adults identified through the us coronavirus disease 2019 (covid-19)-associated hospitalization surveillance network (covid-net). Clin. Infect. Dis. 72(9), e206–e214 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mikami, T. et al. Risk factors for mortality in patients with covid-19 in new york city. J. Gen. Intern. Med. 36(1), 17–26 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rod, J. E., Oviedo-Trespalacios, O. & Cortes-Ramirez, J. A brief-review of the risk factors for COVID-19 severity. Rev. Saude Publica 54, 60 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salerno, S. et al. Comprehensive evaluation of covid-19 patient short-and long-term outcomes: Disparities in healthcare utilization and post-hospitalization outcomes. PLoS ONE 16(10), e0258278 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ssentongo, P. et al. Association of cardiovascular disease and 10 other pre-existing comorbidities with covid-19 mortality: A systematic review and meta-analysis. PLoS ONE 15(8), e0238215 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, B. et al. Does comorbidity increase the risk of patients with covid-19: Evidence from meta-analysis. Aging 12(7), 6049–6057 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williamson, E. J. et al. Factors associated with covid-19-related death using opensafely. Nature 584(7821), 430–436 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Z. & McGoogan, J. M. Characteristics of and important lessons from the coronavirus disease 2019 (covid-19) outbreak in China: Summary of a report of 72314 cases from the chinese center for disease control and prevention. JAMA 323(13), 1239–1242 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 94, 91–95 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clarke, P. & Melendez, R. (Ann Arbor, MI) National neighborhood data archive (nanda): Neighborhood socioeconomic and demographic characteristics of census tracts, united states, 2000–2010. Inter-university Consortium for Political and Social Research.

  • Gu, T. et al. Characteristics associated with racial/ethnic disparities in covid-19 outcomes in an academic health care system. JAMA Netw. Open 3(10), e2025197 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salerno, S. et al. Patterns of repeated diagnostic testing for covid-19 in relation to patient characteristics and outcomes. J. Intern. Med. 289(5), 726–737 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crabb, B. T. et al. Comparison of international classification of diseases and related health problems, tenth revision codes with electronic medical records among patients with symptoms of coronavirus disease 2019. JAMA Netw. Open 3(8), e2017703 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elixhauser, A. et al. Comorbidity measures for use with administrative data. Med. Care 36(1), 8–27 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van Walraven, C. et al. A modification of the elixhauser comorbidity measures into a point system for hospital death using administrative data. Med. Care 47(6), 626–633 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Jain, A. K. Fundamentals of Digital Image Processing (Prentice-Hall Inc, 1989).

    MATH 

    Google Scholar 

  • Yip, S. S. & Aerts, H. J. Applications and limitations of radiomics. Phys. Med. Biol. 61(13), R150 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galloway, M. M. Texture analysis using gray level run lengths. Comput. Graph. Image Process. 4(2), 172–179 (1975).

    Article 

    Google Scholar 

  • Chu, A., Sehgal, C. M. & Greenleaf, J. F. Use of gray value distribution of run lengths for texture analysis. Pattern Recogn. Lett. 11(6), 415–419 (1990).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Haralick, R. M., Shanmugam, K. & Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC 3(6), 610–621 (1973).

    Article 

    Google Scholar 

  • Thibault, G. et al. Shape and texture indexes application to cell nuclei classification. Int. J. Pattern Recogn. Artif. Intell. 27(01), 1357002 (2013).

    Article 
    MathSciNet 

    Google Scholar 

  • Fisher, A., Rudin, C. & Dominici, F. All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. J. Mach. Learn. Res. 20(177), 1–81 (2019).

    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Ishwaran, H. et al. Random survival forests for high-dimensional data. Stat. Anal. Data Min. ASA Data Sci. J. 4(1), 115–132 (2011).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Salerno, S. & Li, Y. High-dimensional survival analysis: Methods and applications. https://doi.org/10.48550/arXiv.2205.02948 (Preprint posted online May 5, 2022).

  • Uno, H. et al. Evaluating prediction rules for t-year survivors with censored regression models. J. Am. Stat. Assoc. 102(478), 527–537 (2007).

    Article 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar 

  • Uno, H. et al. On the c-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 30(10), 1105–1117 (2011).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45(1), 5–32 (2001).

    Article 
    MATH 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *