Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance analysis

Machine Learning


  • Sørensen, T. Forecasting the global obesity epidemic through 2050. Lancet 405(10481), 756–757. https://doi.org/10.1016/S0140-6736(25)00260-0 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Piqueras, P. et al. Anthropometric indicators as a tool for diagnosis of obesity and other health risk factors: A literature review. Front. Psychol. 12, 631179. https://doi.org/10.3389/fpsyg.2021.631179 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The Lancet Diabetes Endocrinology. Redefining obesity: Advancing care for better lives. Lancet Diabetes Endocrinol. 13(2), 75. https://doi.org/10.1016/S2213-8587(25)00004-X (2025).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, X. et al. Association of anthropometric and obesity indices with abnormal blood lipid levels in young and middle-aged adults. Heliyon 11(1), e41310. https://doi.org/10.1016/j.heliyon.2024.e41310 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nimptsch, K., Konigorski, S. & Pischon, T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism 92, 61–70. https://doi.org/10.1016/j.metabol.2018.12.006 (2021).

    Article 
    CAS 

    Google Scholar 

  • Frühbeck, G. et al. Obesity: The gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes. Facts 6(2), 117–120. https://doi.org/10.1159/000350627 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rubino, F. et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 13(3), 221–262. https://doi.org/10.1016/S2213-8587(24)00316-4 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Coral, D. E. et al. Subclassification of obesity for precision prediction of cardiometabolic diseases. Nat. Med. 31(2), 534–543. https://doi.org/10.1038/s41591-024-03299-7 (2025).

    Article 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar 

  • Ceniccola, G. D. et al. Current technologies in body composition assessment: Advantages and disadvantages. Nutrition 62, 25–31. https://doi.org/10.1016/j.nut.2018.11.028 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Carbone, S., Lavie, C. J. & Arena, R. Obesity and heart failure: Focus on the obesity paradox. Mayo Clin. Proc. 92(2), 266–279. https://doi.org/10.1016/j.mayocp.2016.11.001 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Merchant, R. A. et al. Relationship of fat mass index and fat free mass index with body mass index and association with function, cognition and sarcopenia in Pre-Frail older adults. Front. Endocrinol. 12, 765415. https://doi.org/10.3389/fendo.2021.765415 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kim, C. H. et al. Norm references of fat-free mass index and fat mass index and subtypes of obesity based on the combined FFMI-%BF indices in the Korean adults aged 18–89 year. Obes. Res. Clin. Pract. 5(3), e169–e266. https://doi.org/10.1016/j.orcp.2011.01.004 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Romero-Corral, A. et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 32(6), 959–966. https://doi.org/10.1038/ijo.2008.11 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gažarová, M., Bihari, M., Lorková, M., Lenártová, P. & Habánová, M. The use of different anthropometric indices to assess the body composition of young women in relation to the incidence of obesity, sarcopenia and the premature mortality risk. Int. J. Environ. Res. Public Health 19(19), 12449. https://doi.org/10.3390/ijerph191912449 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Górnicka, M. et al. Anthropometric indices as predictive screening tools for obesity in adults; the need to define Sex-Specific Cut-Off points for anthropometric indices. Appl. Sci. 12(12), 6165. https://doi.org/10.3390/app12126165 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gažarová, M., Bihari, M. & Šoltís, J. Fat and fat-free mass as important determinants of body composition assessment in relation to sarcopenic obesity. Rocz. Panstw. Zakl. Hig. 74(1), 59–69. https://doi.org/10.32394/rpzh.2023.0243 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khalil, S. F., Mohktar, M. S. & Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14(6), 10895–10928. https://doi.org/10.3390/s140610895 (2014).

    Article 
    ADS 

    Google Scholar 

  • Bosy-Westphal, A. & Müller, M. J. Diagnosis of obesity based on body composition-associated health risks—Time for a paradigm change. Obes. Rev. 22(2), e13190. https://doi.org/10.1111/obr.13190 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Salihefendic, N., Zildzic, M., Masic, I. & Jankovic, S. M. Anthropometric data by using bioelectrical analysis as parameters for new classification and definition of obesity. Mater. Soc. Med. 37(1), 11–17. https://doi.org/10.5455/msm.2024.37.11-17 (2025).

    Article 

    Google Scholar 

  • Genc, A. C. & Arıcan, E. Obesity classification: A comparative study of machine learning models excluding weight and height data. Rev. Assoc. Med. Bras. 71(1), e20241282 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rostam Niakan Kalhori, S., Najafi, F., Hasannejadasl, H. & Heydari, S. Artificial intelligence-enabled obesity prediction: A systematic review of cohort data analysis. Int. J. Med. Inf. 196, 105804. https://doi.org/10.1016/j.ijmedinf.2025.105804 (2025).

    Article 

    Google Scholar 

  • Kehinde, O. Machine learning in predictive modelling: Addressing chronic disease management through optimized healthcare processes. Int. J. Res. Publ. Rev. 6, 1525–1539 (2025).

    Google Scholar 

  • Scafoglieri, A. & Clarys, J. P. Dual energy X-ray absorptiometry: Gold standard for muscle mass? J. Cachexia Sarcopenia Muscle 9(4), 786–787. https://doi.org/10.1002/jcsm.12308 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballesteros-Pomar, M. D. et al. Bioelectrical impedance analysis as an alternative to dual-energy x-ray absorptiometry in the assessment of fat mass and appendicular lean mass in patients with obesity. Nutrition 93, 111442. https://doi.org/10.1016/j.nut.2021.111442 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Azmi, S. et al. Harnessing artificial intelligence in obesity research and management: A comprehensive review. Diagnostics 15(3), 396. https://doi.org/10.3390/diagnostics15030396 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Huang, L. et al. The role of artificial intelligence in obesity risk prediction and management: Approaches, insights, and recommendations. Medicina 61(2), 358. https://doi.org/10.3390/medicina61020358 (2025).

    Article 

    Google Scholar 

  • Choong, C. et al. Identifying individuals at risk for weight gain using machine learning in electronic medical records from the united States. Diabetes Obes. Metab. 27(6), 3061–3071. https://doi.org/10.1111/dom.16311 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jawara, D. et al. Using machine learning to predict weight gain in adults: an observational analysis from the all of Us research program. J. Surg. Res. 306, 43–53. https://doi.org/10.1016/j.jss.2024.11.042 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Huang, A. A. & Huang, S. Y. Application of a transparent artificial intelligence algorithm for US adults in the obese category of weight. PLoS One 19(5), e0304509. https://doi.org/10.1371/journal.pone.0304509 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Atkinson, J. G. & Atkinson, E. G. Machine learning and health care: Potential benefits and issues. J. Ambul. Care Manag. 46(2), 114–120. https://doi.org/10.1097/JAC.0000000000000453 (2023).

    Article 

    Google Scholar 

  • Bays, H. E. et al. Artificial intelligence and obesity management: an obesity medicine association (OMA) clinical practice statement (CPS) 2023. Obes. Pill. 6, 100065. https://doi.org/10.1016/j.obpill.2023.100065 (2023).

    Article 

    Google Scholar 

  • Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W. & Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 136, 104754 (2021).

    PubMed 

    Google Scholar 

  • An, R., Shen, J. & Xiao, Y. Applications of artificial intelligence to obesity research: Scoping review of methodologies. J. Med. Internet Res. 24(12), e40589. https://doi.org/10.2196/40589 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goecks, J., Jalili, V., Heiser, L. & Gray, J. W. How machine learning will transform biomedicine. Cell 181(1), 92–101. https://doi.org/10.1016/j.cell.2020.03.022 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bull, F. C. et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Harty, P. S. et al. Military body composition standards and physical performance: Historical perspectives and future directions. J. Strength. Cond Res. 36(12), 3551–3561. https://doi.org/10.1519/JSC.0000000000004142 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cohen, J. A power primer. Psychol. Bull. 112(1), 155–159 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • World Medical Association. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 (2013).

    Article 
    CAS 

    Google Scholar 

  • Nilstun, T. Nya Forskningsetiska Riktlinjer Från CIOMS. Föredömlig avvägning autonomi-nytta-rättvisa. Lakartidningen 91(3), 157–161 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Seaw, K. M., Leow, M. K. S. & Bi, X. Early obesity risk prediction via non-dietary lifestyle factors using machine learning approaches. Clin. Obes. 15(1), e70011. https://doi.org/10.1111/cob.70011 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Syahidah, H., Irsandi, N., Nur Ajizah, A. & Amelia, A. Obesity prediction using machine learning algorithms. Int. J. Adv. Technol. Innov. Sci. 2(1), 1 (2025). https://journal.irpi.or.id/index.php/ijatis

    Google Scholar 

  • Dirik, M. Application of machine learning techniques for obesity prediction: A comparative study. J. Complex. Health Sci. 6(2), 16–34. https://doi.org/10.21595/chs.2023.23193 (2023).

    Article 

    Google Scholar 

  • Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794. https://doi.org/10.1145/2939672.2939785 (2016).

  • Benhar, H., Idri, A. & Fernández-Alemán, J. L. Data preprocessing for heart disease classification: A systematic literature review. Comput. Methods Programs Biomed. 195, 105635. https://doi.org/10.1016/j.cmpb.2020.105635 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, Y., Li, D. & Vermund, S. H. Advantages and limitations of the body mass index (BMI) to assess adult obesity. Int. J. Environ. Res. Public Health 21(6), 757. https://doi.org/10.3390/ijerph21060757 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bosch, T. A. et al. Visceral adipose tissue measured by DXA correlates with measurement by CT and is associated with cardiometabolic risk factors in children. Pediatr. Obes. 3, 172–179. https://doi.org/10.1111/ijpo.249 (2015).

    Article 

    Google Scholar 

  • Jin, M. et al. Characteristics and reference values of fat mass index and fat free mass index by bioelectrical impedance analysis in an adult population. Clin. Nutr. 38(5), 2325–2332. https://doi.org/10.1016/j.clnu.2018.10.010 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Peltz, G., Aguirre, M. T., Sanderson, M. & Fadden, M. K. The role of fat mass index in determining obesity. Am. J. Hum. Biol. 22(5), 639–647. https://doi.org/10.1002/ajhb.21056 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, P., Ma, F., Lou, H. & Liu, Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health 13, 629. https://doi.org/10.1186/1471-2458-13-629 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuk, J. L. et al. Visceral fat is an independent predictor of all-cause mortality in men. Obesity 14(2), 336–341. https://doi.org/10.1038/oby.2005.45 (2005).

    Article 

    Google Scholar 

  • Ramírez-Vélez, R. et al. Percentage of body fat and fat mass index as a screening tool for metabolic syndrome prediction in Colombian university students. Nutrients 9(9), 1009. https://doi.org/10.3390/nu9091009 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, A. A. & Huang, S. Y. Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations. PLoS One 18 (2), e0281922. https://doi.org/10.1371/journal.pone.0281922 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Distinguishing apathy and depression in older adults with mild cognitive impairment using text, audio, and video based on multiclass classification and shapely additive explanations. Int. J. Geriatr. Psychiatry. https://doi.org/10.1002/gps.5827 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Lundberg, S. M. & Lee, S. I. A Unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 30, 4765–4774 (2017).

  • Lin, W., Shi, S., Huang, H., Wen, J. & Chen, G. Predicting risk of obesity in overweight adults using interpretable machine learning algorithms. Front. Endocrinol. 14, 1292167. https://doi.org/10.3389/fendo.2023.1292167 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Barber, T. M., Kabisch, S., Pfeiffer, A. F. & Weickert, M. O. Optimised skeletal muscle mass as a key strategy for obesity management. Metabolites 15(2), 85. https://doi.org/10.3390/metabo15020085 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • AlMasud, A. A. et al. Relationship of fat mass index and fat free mass index with body mass index and association with sleeping patterns and physical activity in Saudi young adults women. J. Health Popul. Nutr. 44(1), 64. https://doi.org/10.1186/s41043-025-00795-5 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butte, N. F. et al. Energetic adaptations persist after bariatric surgery in severely obese adolescents. Obesity 23(3), 591–601. https://doi.org/10.1002/oby.20994 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Yang, R. et al. Correlations and consistency of body composition measurement indicators and BMI: A systematic review. Int. J. Obes. 49(1), 4–12. https://doi.org/10.1038/s41366-024-01638-9 (2025).

  • Bosy-Westphal, A. & Müller, M. J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 22(2), e13190. https://doi.org/10.1111/obr.13190 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Abraham, A. & Yaghootkar, H. Identifying obesity subtypes: A review of studies utilising clinical biomarkers and genetic data. Diabet. Med. 40(12), e15226. https://doi.org/10.1111/dme.15226 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *