A scoping review of robustness concepts for machine learning in healthcare

Machine Learning


  • Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Health, C. for D. and R. Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices. FDA (2023).

  • Zhang, Z. et al. Pathologist-level interpretable whole-slide cancer diagnosis with deep learning. Nat. Mach. Intell. 1, 236–245 (2019).

    Article 

    Google Scholar 

  • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pham, T.-C., Luong, C.-M., Hoang, V.-D. & Doucet, A. AI outperformed every dermatologist in dermoscopic melanoma diagnosis, using an optimized deep-CNN architecture with custom mini-batch logic and loss function. Sci. Rep. 11, 17485 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, E. et al. How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals. Nat. Med. 27, 582–584 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagendran, M. et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368, m689 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Finlayson, S. G. et al. Adversarial attacks on medical machine learning. Science 363, 1287–1289 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zech, J. R. et al. Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: A cross-sectional study. PLOS Med. 15, e1002683 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peggy, B. & Yuan, L. Using AI to help find answers to common skin conditions (Google). https://blog.google/technology/health/ai-dermatology-preview-io-2021/.

  • Zhang, J. M., Harman, M., Ma, L. & Liu, Y. Machine Learning Testing: Survey, Landscapes and Horizons. IEEE Transact Softw Engg 48, 1–36 (2022).

    Article 

    Google Scholar 

  • High Level Expert Group on AI. Assessment List for Trustworthy Artificial Intelligence (ALTAI) for self-assessment. https://digital-strategy.ec.europa.eu/en/library/assessment-list-trustworthy-artificial-intelligence-altai-self-assessment (2020).

  • Lekadir, K. et al. FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare. Preprint at https://doi.org/10.48550/arXiv.2309.12325 (2024).

  • DeGrave, A. J., Janizek, J. D. & Lee, S.-I. AI for radiographic COVID-19 detection selects shortcuts over signal. Nat. Mach. Intell. 3, 610–619 (2021).

    Article 

    Google Scholar 

  • Balendran, A., Benchoufi, M., Evgeniou, T. & Ravaud, P. Algorithmovigilance, lessons from pharmacovigilance. Npj Digit. Med. 7, 1–6 (2024).

    Article 

    Google Scholar 

  • Arksey, H. & O’Malley, L. Scoping studies: towards a methodological framework. Int. J. Soc. Res. Methodol. 8, 19–32 (2005).

    Article 

    Google Scholar 

  • Munn, Z. et al. Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Med. Res. Methodol. 18, 143 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nyanchoka, L. et al. A scoping review describes methods used to identify, prioritize and display gaps in health research. J. Clin. Epidemiol. 109, 99–110 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Kyung, S. et al. Improved performance and robustness of multi-task representation learning with consistency loss between pretexts for intracranial hemorrhage identification in head CT. Med. Image Anal. 81, 102489 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Valliani, A. A. et al. Robust Prediction of Non-home Discharge After Thoracolumbar Spine Surgery With Ensemble Machine Learning and Validation on a Nationwide Cohort. World Neurosurg. 165, e83–e91 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Huo, J., Wu, L. & Zang, Y. Development and Validation of a Robust Immune-Related Prognostic Signature for Gastric Cancer. J. Immunol. Res. 2021, 5554342 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, W. et al. A Novel and Robust Prognostic Model for Hepatocellular Carcinoma Based on Enhancer RNAs-Regulated Genes. Front. Oncol. 12, 849242 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, Y. et al. Assessment of the timeliness and robustness for predicting adult sepsis. iScience 24, 102106 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Khoshnevisan, F. & Chi, M. Unifying Domain Adaptation and Domain Generalization for Robust Prediction Across Minority Racial Groups. in Machine Learning and Knowledge Discovery in Databases. Research Track (eds. Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J. & Lozano, J. A.) 521–537 (Springer International Publishing, Cham, 2021). https://doi.org/10.1007/978-3-030-86486-6_32.

  • Lu, Y. et al. Robust Speech and Natural Language Processing Models for Depression Screening. in 2020 IEEE Signal Processing in Medicine and Biology Symposium (SPMB) 1–5 (2020). https://doi.org/10.1109/SPMB50085.2020.9353611.

  • Malafaia, M., Silva, F., Neves, I., Pereira, T. & Oliveira, H. P. Robustness Analysis of Deep Learning-Based Lung Cancer Classification Using Explainable Methods. IEEE Access 10, 112731–112741 (2022).

    Article 

    Google Scholar 

  • O’Brien, M., Bukowski, J., Hager, G., Pezeshk, A. & Unberath, M. Evaluating neural network robustness for melanoma classification using mutual information. in Medical Imaging 2022: Image Processing vol. 12032 173–177 (SPIE, 2022).

  • Joel, M. Z. et al. Using Adversarial Images to Assess the Robustness of Deep Learning Models Trained on Diagnostic Images in Oncology. JCO Clin. Cancer Inform. 6, e2100170 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, L. & Liang, L. A regularization method to improve adversarial robustness of neural networks for ECG signal classification. Comput. Biol. Med. 144, 105345 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wang, K., Wang, G., Chen, N. & Chen, T. How Robust is Your Automatic Diagnosis Model? in 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 877–884 (2019). https://doi.org/10.1109/BIBM47256.2019.8983217.

  • Çallı, E. et al. Deep learning with robustness to missing data: A novel approach to the detection of COVID-19. PloS One 16, e0255301 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramoni, M., Sebastiani, P. & Dybowski, R. Robust outcome prediction for intensive-care patients. Methods Inf. Med. 40, 39–45 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, P. P. et al. MULTIBENCH: Multiscale Benchmarks for Multimodal Representation Learning.

  • Potapenko, I. et al. Detection of oedema on optical coherence tomography images using deep learning model trained on noisy clinical data. Acta Ophthalmol. (Copenh.) 100, 103–110 (2022).

    Article 

    Google Scholar 

  • Ju, L. et al. Improving Medical Images Classification With Label Noise Using Dual-Uncertainty Estimation. IEEE Trans. Med. Imaging 41, 1533–1546 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Peng, T. et al. Noise Robust Learning with Hard Example Aware for Pathological Image classification. in 2020 IEEE 6th International Conference on Computer and Communications (ICCC) 1903–1907 (2020). https://doi.org/10.1109/ICCC51575.2020.9344937.

  • Hekler, A. et al. Effects of Label Noise on Deep Learning-Based Skin Cancer Classification. Front. Med. 7, 177 (2020).

    Article 

    Google Scholar 

  • Oakden-Rayner, L. Exploring Large-scale Public Medical Image Datasets. Acad. Radiol. 27, (2019).

  • Kurian, N. C., Meshram, P. S., Patil, A., Patel, S. & Sethi, A. Sample Specific Generalized Cross Entropy for Robust Histology Image Classification. in 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI) 1934–1938 (2021). https://doi.org/10.1109/ISBI48211.2021.9434169.

  • Saab, K. et al. Reducing Reliance on Spurious Features in Medical Image Classification with Spatial Specificity. in Proceedings of the 7th Machine Learning for Healthcare Conference 760–784 (PMLR, 2022).

  • Wang, X. et al. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. in 3462–3471 (IEEE Computer Society, 2017). https://doi.org/10.1109/CVPR.2017.369.

  • Weinstein, J. N. et al. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 45, 1113–1120 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Re-thinking and Re-labeling LIDC-IDRI for Robust Pulmonary Cancer Prediction. in Medical Image Learning with Limited and Noisy Data (eds. Zamzmi, G. et al.) 42–51 (Springer Nature Switzerland, Cham, 2022). https://doi.org/10.1007/978-3-031-16760-7_5.

  • Pan, S., Sheng, B., He, G., Li, H. & Xue, G. BAW: learning from class imbalance and noisy labels with batch adaptation weighted loss. Multimed. Tools Appl. 81, 13593–13610 (2022).

    Article 

    Google Scholar 

  • Hajiabadi, H., Babaiyan, V., Zabihzadeh, D. & Hajiabadi, M. Combination of loss functions for robust breast cancer prediction. Comput. Electr. Eng. 84, 106624 (2020).

    Article 

    Google Scholar 

  • Qayyum, A., Qadir, J., Bilal, M. & Al-Fuqaha, A. Secure and Robust Machine Learning for Healthcare: A Survey. IEEE Rev. Biomed. Eng. 14, 156–180 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Freiesleben, T. & Grote, T. Beyond generalization: a theory of robustness in machine learning. Synthese 202, 109 (2023).

    Article 

    Google Scholar 

  • Castro, D. C., Walker, I. & Glocker, B. Causality matters in medical imaging. Nat. Commun. 11, 3673 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peters, M. D. J. et al. Guidance for conducting systematic scoping reviews. JBI Evid. Implement. 13, 141–146 (2015).

    Google Scholar 

  • Tricco, A. C. et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 169, 467–473 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Balendran, A. Machine learning robustness concepts in healthcare: a scoping review protcol. https://osf.io/xrqpb/?view_only=945f3c9f8f7346869418ebf5f788ed3f.

  • Funk, M. J. et al. Doubly Robust Estimation of Causal Effects. Am. J. Epidemiol. 173, 761–767 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishii, S. & Ljunggren, D. A Comparative Analysis of Robustness to Noise in Machine Learning Classifiers. (2021).

  • Arcaini, P., Bombarda, A., Bonfanti, S. & Gargantini, A. Dealing with Robustness of Convolutional Neural Networks for Image Classification. in 2020 IEEE International Conference On Artificial Intelligence Testing (AITest) 7–14 (IEEE, Oxford, UK, 2020). https://doi.org/10.1109/AITEST49225.2020.00009.

  • Ren, L.-R., Gao, Y.-L., Liu, J.-X., Zhu, R. & Kong, X.-Z. L2,1-Extreme Learning Machine: An Efficient Robust Classifier for Tumor Classification. Comput. Biol. Chem. 89, 107368 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abdelhack, M. et al. A Modulation Layer to Increase Neural Network Robustness Against Data Quality Issues.

  • Iori, M. et al. Mortality Prediction of COVID-19 Patients Using Radiomic and Neural Network Features Extracted from a Wide Chest X-ray Sample Size: A Robust Approach for Different Medical Imbalanced Scenarios. Appl. Sci. 12, 3903 (2022).

    Article 
    CAS 

    Google Scholar 

  • Adnan, N., Najnin, T. & Ruan, J. A Robust Personalized Classification Method for Breast Cancer Metastasis Prediction. Cancers 14, 5327 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suter, Y. et al. Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20, 55 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, L. et al. Robust phase-based texture descriptor for classification of breast ultrasound images. Biomed. Eng. OnLine 14, 26 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, Y. & Ho, J. C. Tackling Overfitting in Boosting for Noisy Healthcare Data. IEEE Trans. Knowl. Data Eng. 33, 2995–3006 (2021).

    Article 

    Google Scholar 

  • Clancy, K. et al. Deep learning for identifying breast cancer malignancy and false recalls: a robustness study on training strategy. in Medical Imaging 2019: Computer-Aided Diagnosis vol. 10950 20–25 (SPIE, 2019).

  • Vargason, T. et al. Classification of autism spectrum disorder from blood metabolites: Robustness to the presence of co-occurring conditions. Res. Autism Spectr. Disord. 77, 101644 (2020).

    Article 

    Google Scholar 

  • Moen, T., Ferrero, A. & McCollough, C. Robustness of Textural Features to Predict Stone Fragility Across Computed Tomography Acquisition and Reconstruction Parameters. Acad. Radiol. 26, 885–892 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Massafra, R. et al. Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy. J. Pers. Med. 12, 953 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *