Ishihara, K. & Koga, Y. Case studies of liquefaction in the 1964 Niigata Earthquake. Soils Found. 21, 35–52 (1981).
Google Scholar
Youd, T. L. Ground failure investigations following the 1964 Alaska Earthquake. in Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK (2014).
Toda, S., Hataya, R., Abe, S. & Miyakoshi, K. The 1995 Kobe earthquake and problems of evaluation of active faults in Japan. Eng. Geol. 43, 151–167 (1996).
Google Scholar
Giona Bucci, M. et al. Associations between sediment architecture and liquefaction susceptibility in fluvial settings: The 2010–2011 Canterbury Earthquake Sequence, New Zealand. Eng. Geol. 237, 181–197 (2018).
Google Scholar
Sassa, S. & Takagawa, T. Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides 16, 195–200 (2019).
Google Scholar
Su, D., Ming, H. Y. & Li, X. S. Effect of shaking strength on the seismic response of liquefiable level ground. Eng. Geol. 166, 262–271 (2013).
Google Scholar
Wang, Y., Cao, T., Gao, Y. & Shao, J. Experimental study on liquefaction characteristics of saturated Yellow River silt under cycles loading. Soil Dynam. Earthq. Eng. 163, 107457 (2022).
Google Scholar
Geyin, M., Maurer, B. W. & van Ballegooy, S. Lifecycle Liquefaction Hazard Assessment and Mitigation. in Geo-Congress 2020 312–320 (American Society of Civil Engineers Reston, VA, 2020).
Kim, S. & Park, K. Proposal of liquefaction potential assessment procedure using real earthquake loading. KSCE J. Civ. Eng. 12, 15–24 (2008).
Google Scholar
ElGhoraiby, M. A., Park, H. & Manzari, M. T. Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dynam. Earthq. Eng. 138, 106292 (2020).
Google Scholar
Silver, M. L. & Park, T. K. Liquefaction potential evaluated from cyclic strain-controlled properties tests on sands. Soils Foundations 16, 51–65 (1976).
Google Scholar
Kokusho, T. Energy-based liquefaction evaluation for induced strain and surface settlement—Evaluation steps and case studies. Soil Dynam. Earthq. Eng. 143, 106552 (2021).
Google Scholar
Chen, Y.-R., Chen, J.-W., Hsieh, S.-C. & Chang, Y.-T. Evaluation of soil liquefaction potential based on the nonlinear energy dissipation principles. J. Earthq. Eng. 17, 54–72 (2013).
Google Scholar
Jain, A., Mittal, S. & Shukla, S. K. Energy-based approach to study liquefaction triggering in homogeneous and stratified soils under consolidated undrained cyclic loading. Eng. Geol. 321, 107151 (2023).
Google Scholar
Tokimatsu, K. & Yoshimi, Y. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils Foundations 23, 56–74 (1983).
Google Scholar
Cetin, K. O. et al. The use of the SPT-based seismic soil liquefaction triggering evaluation methodology in engineering hazard assessments. MethodsX 5, 1556–1575 (2018).
Google Scholar
Daag, A. S., Halasan, O. P. C., Magnaye, A. A. T., Grutas, R. N. & Solidum, R. U. Empirical correlation between standard penetration resistance (SPT-N) and shear wave velocity (Vs) for soils in Metro Manila, Philippines. Appl. Sci. https://doi.org/10.3390/app12168067 (2022).
Google Scholar
Karamitros, D. K., Bouckovalas, G. D., Chaloulos, Y. K. & Andrianopoulos, K. I. Numerical analysis of liquefaction-induced bearing capacity degradation of shallow foundations on a two-layered soil profile. Soil Dynam. Earthq. Eng. 44, 90–101 (2013).
Google Scholar
Kusakabe, R., Ichimura, T., Fujita, K., Hori, M. & Wijerathne, L. A finite element analysis method for simulating seismic soil liquefaction based on a large-scale 3D soil structure model. Soil Dynam. Earthq. Eng. 123, 64–74 (2019).
Google Scholar
Hameed, M. M., AlOmar, M. K., Al-Saadi, A. A. A. & AlSaadi, M. A. Inflow forecasting using regularized extreme learning machine: Haditha reservoir chosen as case study. Stoch. Environ. Res. Risk Assess. 36, 4201–4221. https://doi.org/10.1007/s00477-022-02254-7 (2022).
Google Scholar
Alomar, M. K. et al. Data-driven models for atmospheric air temperature forecasting at a continental climate region. PLoS One 17, e0277079 (2022).
Google Scholar
Shi, M.-L., Lv, L. & Xu, L. A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design. Eng. Comput. (Swansea) 40, 473–493 (2023).
Google Scholar
Long, X., Mao, M., Su, T., Su, Y. & Tian, M. Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Defence Technol. 23, 100–111 (2023).
Google Scholar
Rai, P., Pei, H., Meng, F. & Ahmad, M. Utilization of marble powder and magnesium phosphate cement for improving the engineering characteristics of soil. Int. J. Geosynth. Ground Eng. 6, 31 (2020).
Google Scholar
Ahmad, M., Tang, X.-W., Qiu, J.-N. & Ahmad, F. Evaluating seismic soil liquefaction potential using Bayesian belief network and C45 decision tree approaches. Appl. Sci. https://doi.org/10.3390/app9204226 (2019).
Google Scholar
Samui, P., Kim, D. & Sitharam, T. G. Support vector machine for evaluating seismic-liquefaction potential using shear wave velocity. J. Appl. Geophy. 73, 8–15 (2011).
Google Scholar
Jas, K. & Dodagoudar, G. R. Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dynam. Earthq. Eng. 165, 107662 (2023).
Google Scholar
Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using soft computing techniques. J. Inst. Eng. (India) Series A. 103, 1195–1208 (2022).
Google Scholar
Egbueri, J. C., Igwe, O., Omeka, M. E. & Agbasi, J. C. Development of MLR and variedly optimized ANN models for forecasting the detachability and liquefaction potential index of erodible soils. Geosyst. Geoenviron. 2, 100104 (2023).
Google Scholar
Jangir, H. K. & Satavalekar, R. Evaluating Adaptive Neuro-Fuzzy Inference System (ANFIS) to assess liquefaction potential and settlements using CPT test data. J. Soft Comput. Civ. Eng. 6, 119–139 (2022).
Zhang, Y., Qiu, J., Zhang, Y. & Wei, Y. The adoption of ELM to the prediction of soil liquefaction based on CPT. Nat. Hazards 107, 539–549 (2021).
Google Scholar
Cai, M. et al. Integrating the LSSVM and RBFNN models with three optimization algorithms to predict the soil liquefaction potential. Eng. Comput. 38, 3611–3623 (2022).
Google Scholar
Zhou, J., Huang, S., Wang, M. & Qiu, Y. Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation. Eng. Comput. 38, 4197–4215 (2022).
Google Scholar
Zhang, J. & Wang, Y. An ensemble method to improve prediction of earthquake-induced soil liquefaction: A multi-dataset study. Neural Comput. Appl. 33, 1533–1546 (2021).
Google Scholar
Taleb Bahmed, I. et al. Prediction of geotechnical properties of clayey soils stabilised with lime using artificial neural networks (ANNs). Int. J. Geotech. Eng. 13, 191–203 (2019).
Google Scholar
Zhang, P., Yin, Z.-Y. & Jin, Y.-F. Machine learning-based modelling of soil properties for geotechnical design: Review, tool development and comparison. Arch. Comput. Methods Eng. 29, 1229–1245 (2022).
Google Scholar
Ozsagir, M., Erden, C., Bol, E., Sert, S. & Özocak, A. Machine learning approaches for prediction of fine-grained soils liquefaction. Comput. Geotech. 152, 105014 (2022).
Google Scholar
Liu, C. et al. The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling. Tunnel. Underground Space Technol. 111, 103857 (2021).
Google Scholar
Taffese, W. Z. & Abegaz, K. A. Prediction of compaction and strength properties of amended soil using machine learning. Buildings. https://doi.org/10.3390/buildings12050613 (2022).
Google Scholar
Ghani, S., Kumari, S. & Ahmad, S. Prediction of the seismic effect on liquefaction behavior of fine-grained soils using artificial intelligence-based hybridized modeling. Arab. J. Sci. Eng. 47, 5411–5441 (2022).
Google Scholar
Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using soft computing techniques. J. Inst. Eng. India Series A. 103, 1195–1208 (2022).
Google Scholar
Zhou, J., Huang, S., Zhou, T., Armaghani, D. J. & Qiu, Y. Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif. Intell. Rev. 55, 5673–5705 (2022).
Google Scholar
Ahmad, M., Tang, X. & Ahmad, F. Evaluation of liquefaction-induced settlement using random forest and REP tree models: taking pohang earthquake as a case of illustration. in Natural Hazards-Impacts, Adjustments and Resilience (IntechOpen, 2020).
Bairwa, A. K., Joshi, S. & Singh, D. Dingo optimizer: A nature-inspired metaheuristic approach for engineering problems. Math. Probl. Eng. 2021, 2571863 (2021).
Google Scholar
Berrill, J. B. & Davis, R. O. Energy dissipation and seismic liquefaction of sands: Revised model. Soils Foundations 25, 106–118 (1985).
Google Scholar
Baziar, M. H., Jafarian, Y., Shahnazari, H., Movahed, V. & Amin Tutunchian, M. Prediction of strain energy-based liquefaction resistance of sand–silt mixtures: An evolutionary approach. Comput. Geosci. 37, 1883–1893 (2011).
Google Scholar
Tao, M. Case History Verification of the Energy Method to Determine the Liquefaction Potential of Soil Deposits. (Case Western Reserve University, 2003).
Rokoff, M. D. The influence of grain-size characteristics in determining the liquefaction potential of a soil deposit by the energy method. (1999).
Kanagalingam, T. Liquefaction Resistance of Granular Mixes Based on Contact Density and Energy Considerations. (State University of New York at Buffalo, 2006).
Ahmad, M., Tang, X.-W., Qiu, J.-N. & Ahmad, F. Interpretive structural modeling and MICMAC analysis for identifying and benchmarking significant factors of seismic soil liquefaction. Appl. Sci. https://doi.org/10.3390/app9020233 (2019).
Google Scholar
Heddam, S. et al. Chapter 1—Predicting dissolved oxygen concentration in river using new advanced machines learning: Long-short term memory (LSTM) deep learning. in (ed. Pourghasemi, H. R. B. T.-C. in E. and E. S.) 1–20 (Elsevier, 2022). https://doi.org/10.1016/B978-0-323-89861-4.00031-2.
Parveen, N., Zaidi, S. & Danish, M. Development of SVR-based model and comparative analysis with MLR and ANN models for predicting the sorption capacity of Cr(VI). Process Safety Environ. Protect. 107, 428–437 (2017).
Google Scholar
Were, K., Bui, D. T., Dick, Ø. B. & Singh, B. R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 52, 394–403 (2015).
Google Scholar
Kaingo, J., Tumbo, S. D., Kihupi, N. I. & Mbilinyi, B. P. Prediction of soil moisture-holding capacity with support vector machines in dry subhumid tropics. Appl. Environ. Soil Sci. 2018, 9263296 (2018).
Google Scholar
Tabarsa, A., Latifi, N., Osouli, A. & Bagheri, Y. Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines. Front. Struct. Civ. Eng. 15, 520–536 (2021).
Google Scholar
Huang, G. B., Zhu, Q. Y. & Siew, C. K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).
Google Scholar
Masood, A., Niazkar, M., Zakwan, M. & Piraei, R. A machine learning-based framework for water quality index estimation in the Southern Bug River. Water. https://doi.org/10.3390/w15203543 (2023).
Google Scholar
Masood, A. et al. Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm. Sci. Rep. 13, 1–17 (2023).
Google Scholar
Zhang, J., Li, Y., Xiao, W. & Zhang, Z. Non-iterative and fast deep learning: multilayer extreme learning machines. J. Franklin. Inst. 357, 8925–8955 (2020).
Google Scholar
Ding, S., Xu, X. & Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 25, 549–556 (2014).
Google Scholar
Wang, J., Lu, S., Wang, S.-H. & Zhang, Y.-D. A review on extreme learning machine. Multimed. Tools Appl. 81, 41611–41660 (2022).
Google Scholar
Kang, M., Chen, H. & Dong, J. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and Q-leaning. Neurocomputing 402, 384–394 (2020).
Google Scholar
Hameed, M. M., Mohd Razali, S. F., Wan Mohtar, W. H. M., Ahmad Alsaydalani, M. O. & Yaseen, Z. M. Deep learning versus hybrid regularized extreme learning machine for multi-month drought forecasting: A comparative study and trend analysis in tropical region. Heliyon 10, e22942 (2024).
Google Scholar
Hameed, M. M., Razali, S. F. M., Mohtar, W. H. M. W., Rahman, N. A. & Yaseen, Z. M. Machine learning models development for accurate multi-months ahead drought forecasting: Case study of the Great Lakes, North America. PLoS One 18, e0290891 (2023).
Google Scholar
Ghani, S., Kumari, S. & Bardhan, A. A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sādhanā 46, 113 (2021).
Google Scholar
Wang, J., Lu, S., Wang, S. H. & Zhang, Y. D. A review on extreme learning machine. Multimed. Tools Appl. 81, 41611–41660 (2021).
Google Scholar
Almazán-Covarrubias, J. H., Peraza-Vázquez, H., Peña-Delgado, A. F. & García-Vite, P. M. An improved Dingo optimization algorithm applied to SHE-PWM modulation strategy. Appl. Sci. 12, 992 (2022).
Google Scholar
Peraza-Vázquez, H. et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Math. Probl. Eng. 2021, 9107547 (2021).
Google Scholar
Ramya, K. & Ayothi, S. Hybrid dingo and whale optimization algorithm-based optimal load balancing for cloud computing environment. Trans. Emerg. Telecommun. Technol. 34, e4760 (2023).
Google Scholar
Nayak, S. R., Khadanga, R. K., Arya, Y., Panda, S. & Sahu, P. R. Influence of ultra-capacitor on AGC of five-area hybrid power system with multi-type generations utilizing sine cosine adopted dingo optimization algorithm. Electr. Power Syst. Res. 223, 109513 (2023).
Google Scholar
Cai, W. & Duan, F. Task scheduling for federated learning in edge cloud computing environments by using adaptive-greedy dingo optimization algorithm and Binary Salp Swarm Algorithm. Future Internet. https://doi.org/10.3390/fi15110357 (2023).
Google Scholar
Muazu, A. A., Hashim, A. S. & Sarlan, A. Review of nature inspired metaheuristic algorithm selection for combinatorial t-way testing. IEEE Access 10, 27404–27431 (2022).
Google Scholar
Zaghloul, M. S., Hamza, R. A., Iorhemen, O. T. & Tay, J. H. Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors. J. Environ. Chem. Eng. 8, 103742 (2020).
Google Scholar
Ghani, S. & Kumari, S. Plasticity-based liquefaction prediction using support vector machine and adaptive neuro-fuzzy inference system. Lecture Notes Civ. Eng. 300, 515–527 (2023).
Google Scholar
Deif, M., Hammam, R. & Solyman, A. Adaptive neuro-fuzzy inference system (ANFIS) for rapid diagnosis of COVID-19 cases based on routine blood tests. Int. J. Intel. Eng. Syst. 14, 178–189 (2021).
Tulla, P. S. et al. Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand. Theor. Appl. Climatol. 155, 4023–4047. https://doi.org/10.1007/s00704-024-04862-5 (2024).
Ehteram, M. et al. Performance improvement for infiltration rate prediction using hybridized Adaptive Neuro-Fuzzy Inferences System (ANFIS) with optimization algorithms. Ain Shams Eng. J. 12, 1665–1676 (2021).
Google Scholar
Babanezhad, M., Masoumian, A., Nakhjiri, A. T., Marjani, A. & Shirazian, S. Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS). Sci. Rep. 10, 16110 (2020).
Google Scholar
Kanagaraj, N. An adaptive neuro-fuzzy inference system to improve fractional order controller performance. Intell. Autom. Soft Comput. 35 (2023).
Adnan, R. M. et al. Enhancing accuracy of extreme learning machine in predicting river flow using improved reptile search algorithm. Stochastic Environ. Res. Risk Assessment 37, 3063–3083 (2023).
Google Scholar
Adeleke, O., Akinlabi, S. A., Jen, T. C. & Dunmade, I. Prediction of municipal solid waste generation: An investigation of the effect of clustering techniques and parameters on ANFIS model performance. Environ. Technol. 43, 1634–1647 (2022).
Google Scholar
Hussain, W., Merigó, J. M., Raza, M. R. & Gao, H. A new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means, subtractive clustering and grid partitioning. Inf. Sci. (N Y) 584, 280–300 (2022).
Google Scholar
Jafari, M. M., Ojaghlou, H., Zare, M. & Schumann, G. J. P. Application of a novel hybrid wavelet-ANFIS/fuzzy C-means clustering model to predict groundwater fluctuations. Atmosphere. 12, 9 (2020).
Google Scholar
Chen, W., Chen, X., Peng, J., Panahi, M. & Lee, S. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci. Front. 12, 93–107 (2021).
Google Scholar
Yilmaz, S., Ilhan, R. & Feyzullahoğlu, E. Estimation of adhesive wear behavior of the glass fiber reinforced polyester composite materials using ANFIS model. J. Elastomers Plastics 54, 86–110 (2022).
Google Scholar
Pramod, C. P. & Pillai, G. N. K-Means clustering based Extreme Learning ANFIS with improved interpretability for regression problems. Knowl. Based Syst. 215, 106750 (2021).
Google Scholar
Kumar, R., Sahu, M. & Mohdiwale, S. Two class motor imagery classification based on ANFIS. Lecture Notes Electr. Eng. 601, 703–711 (2020).
Google Scholar
Pham, B. T., Son, L. H., Hoang, T.-A., Nguyen, D.-M. & Tien Bui, D. Prediction of shear strength of soft soil using machine learning methods. Catena (Amst). 166, 181–191 (2018).
Google Scholar
Pham, B. T. et al. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena (Amst) 173, 302–311 (2019).
Google Scholar
Tunçay, T., Alaboz, P., Dengiz, O. & Başkan, O. Application of regression kriging and machine learning methods to estimate soil moisture constants in a semi-arid terrestrial area. Comput. Electron. Agric. 212, 108118 (2023).
Google Scholar
Iqbal, M., Onyelowe, K. C. & Jalal, F. E. Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multisc. Multidiscip. Model. Exp. Design 4, 207–225 (2021).
Google Scholar
Hameed, M. M., Mohd Razali, S. F., Wan Mohtar, W. H. M. & Yaseen, Z. M. Improving multi-month hydrological drought forecasting in a tropical region using hybridized extreme learning machine model with Beluga Whale Optimization algorithm. Stochastic Environ. Res. Risk Assessment. 37, 4963–4989 (2023).
Google Scholar
Masood, A. & Ahmad, K. Prediction of PM2.5 concentrations using soft computing techniques for the megacity Delhi, India. Stochastic Environ. Res. Risk Assessment 37, 625–638 (2023).
Google Scholar
Hameed, M. M., Khaleel, F., AlOmar, M. K., Mohd Razali, S. F. & Alsaadi, M. A. Optimising the selection of input variables to increase the predicting accuracy of shear strength for deep beams. Complexity 2022, (2022).
Hameed, M. M., Abed, M. A., Al-Ansari, N. & Alomar, M. K. Predicting compressive strength of concrete containing industrial waste materials: Novel and hybrid machine learning model. Adv. Civ. Eng. 2022, 5586737 (2022).
Mamata, R., Ramlia, A., et al. (2022). Slope stability prediction of road embankment using artificial neural network combined with genetic algorithm. journalarticle.ukm.myRC Mamata, A Ramlia, MRM Yazidb, A Kasab, SFM Razalib, MN BastamcJurnal Kejuruteraan, 2022•journalarticle.ukm.my.
al_goodplot—boxblot & violin plot—File Exchange – MATLAB Central. https://www.mathworks.com/matlabcentral/fileexchange/91790-al_goodplot-boxblot-violin-plot.
Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using hybrid ANN with optimization techniques. Arab. J. Geosci. 15, 1–21 (2022).
Google Scholar
Ghani, S. & Kumari, S. Prediction of soil liquefaction for railway embankment resting on fine soil deposits using enhanced machine learning techniques. J. Earth Syst. Sci. 132, 145 (2023).
Google Scholar
Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using hybrid ANN with optimization techniques. Arab. J. Geosci. 15, (2022).
Mohammed, M., Sharafati, A., Al-Ansari, N. & Yaseen, Z. M. Shallow foundation settlement quantification: Application of hybridized adaptive neuro-fuzzy inference system model. Adv. Civ. Eng. 2020, (2020).
