Investigating a hybrid extreme learning machine coupled with Dingo Optimization Algorithm for modeling liquefaction triggering in sand-silt mixtures

Machine Learning


  • Ishihara, K. & Koga, Y. Case studies of liquefaction in the 1964 Niigata Earthquake. Soils Found. 21, 35–52 (1981).

    Article 

    Google Scholar 

  • Youd, T. L. Ground failure investigations following the 1964 Alaska Earthquake. in Proceedings of the 10th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK (2014).

  • Toda, S., Hataya, R., Abe, S. & Miyakoshi, K. The 1995 Kobe earthquake and problems of evaluation of active faults in Japan. Eng. Geol. 43, 151–167 (1996).

    Article 

    Google Scholar 

  • Giona Bucci, M. et al. Associations between sediment architecture and liquefaction susceptibility in fluvial settings: The 2010–2011 Canterbury Earthquake Sequence, New Zealand. Eng. Geol. 237, 181–197 (2018).

    Article 

    Google Scholar 

  • Sassa, S. & Takagawa, T. Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides 16, 195–200 (2019).

    Article 

    Google Scholar 

  • Su, D., Ming, H. Y. & Li, X. S. Effect of shaking strength on the seismic response of liquefiable level ground. Eng. Geol. 166, 262–271 (2013).

    Article 

    Google Scholar 

  • Wang, Y., Cao, T., Gao, Y. & Shao, J. Experimental study on liquefaction characteristics of saturated Yellow River silt under cycles loading. Soil Dynam. Earthq. Eng. 163, 107457 (2022).

    Article 

    Google Scholar 

  • Geyin, M., Maurer, B. W. & van Ballegooy, S. Lifecycle Liquefaction Hazard Assessment and Mitigation. in Geo-Congress 2020 312–320 (American Society of Civil Engineers Reston, VA, 2020).

  • Kim, S. & Park, K. Proposal of liquefaction potential assessment procedure using real earthquake loading. KSCE J. Civ. Eng. 12, 15–24 (2008).

    Article 

    Google Scholar 

  • ElGhoraiby, M. A., Park, H. & Manzari, M. T. Stress-strain behavior and liquefaction strength characteristics of Ottawa F65 sand. Soil Dynam. Earthq. Eng. 138, 106292 (2020).

    Article 

    Google Scholar 

  • Silver, M. L. & Park, T. K. Liquefaction potential evaluated from cyclic strain-controlled properties tests on sands. Soils Foundations 16, 51–65 (1976).

    Article 

    Google Scholar 

  • Kokusho, T. Energy-based liquefaction evaluation for induced strain and surface settlement—Evaluation steps and case studies. Soil Dynam. Earthq. Eng. 143, 106552 (2021).

    Article 

    Google Scholar 

  • Chen, Y.-R., Chen, J.-W., Hsieh, S.-C. & Chang, Y.-T. Evaluation of soil liquefaction potential based on the nonlinear energy dissipation principles. J. Earthq. Eng. 17, 54–72 (2013).

    Article 

    Google Scholar 

  • Jain, A., Mittal, S. & Shukla, S. K. Energy-based approach to study liquefaction triggering in homogeneous and stratified soils under consolidated undrained cyclic loading. Eng. Geol. 321, 107151 (2023).

    Article 

    Google Scholar 

  • Tokimatsu, K. & Yoshimi, Y. Empirical correlation of soil liquefaction based on SPT N-value and fines content. Soils Foundations 23, 56–74 (1983).

    Article 

    Google Scholar 

  • Cetin, K. O. et al. The use of the SPT-based seismic soil liquefaction triggering evaluation methodology in engineering hazard assessments. MethodsX 5, 1556–1575 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Daag, A. S., Halasan, O. P. C., Magnaye, A. A. T., Grutas, R. N. & Solidum, R. U. Empirical correlation between standard penetration resistance (SPT-N) and shear wave velocity (Vs) for soils in Metro Manila, Philippines. Appl. Sci. https://doi.org/10.3390/app12168067 (2022).

    Article 

    Google Scholar 

  • Karamitros, D. K., Bouckovalas, G. D., Chaloulos, Y. K. & Andrianopoulos, K. I. Numerical analysis of liquefaction-induced bearing capacity degradation of shallow foundations on a two-layered soil profile. Soil Dynam. Earthq. Eng. 44, 90–101 (2013).

    Article 

    Google Scholar 

  • Kusakabe, R., Ichimura, T., Fujita, K., Hori, M. & Wijerathne, L. A finite element analysis method for simulating seismic soil liquefaction based on a large-scale 3D soil structure model. Soil Dynam. Earthq. Eng. 123, 64–74 (2019).

    Article 

    Google Scholar 

  • Hameed, M. M., AlOmar, M. K., Al-Saadi, A. A. A. & AlSaadi, M. A. Inflow forecasting using regularized extreme learning machine: Haditha reservoir chosen as case study. Stoch. Environ. Res. Risk Assess. 36, 4201–4221. https://doi.org/10.1007/s00477-022-02254-7 (2022).

    Article 

    Google Scholar 

  • Alomar, M. K. et al. Data-driven models for atmospheric air temperature forecasting at a continental climate region. PLoS One 17, e0277079 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, M.-L., Lv, L. & Xu, L. A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design. Eng. Comput. (Swansea) 40, 473–493 (2023).

    Article 

    Google Scholar 

  • Long, X., Mao, M., Su, T., Su, Y. & Tian, M. Machine learning method to predict dynamic compressive response of concrete-like material at high strain rates. Defence Technol. 23, 100–111 (2023).

    Article 
    CAS 

    Google Scholar 

  • Rai, P., Pei, H., Meng, F. & Ahmad, M. Utilization of marble powder and magnesium phosphate cement for improving the engineering characteristics of soil. Int. J. Geosynth. Ground Eng. 6, 31 (2020).

    Article 

    Google Scholar 

  • Ahmad, M., Tang, X.-W., Qiu, J.-N. & Ahmad, F. Evaluating seismic soil liquefaction potential using Bayesian belief network and C45 decision tree approaches. Appl. Sci. https://doi.org/10.3390/app9204226 (2019).

    Article 

    Google Scholar 

  • Samui, P., Kim, D. & Sitharam, T. G. Support vector machine for evaluating seismic-liquefaction potential using shear wave velocity. J. Appl. Geophy. 73, 8–15 (2011).

    Article 
    ADS 

    Google Scholar 

  • Jas, K. & Dodagoudar, G. R. Explainable machine learning model for liquefaction potential assessment of soils using XGBoost-SHAP. Soil Dynam. Earthq. Eng. 165, 107662 (2023).

    Article 

    Google Scholar 

  • Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using soft computing techniques. J. Inst. Eng. (India) Series A. 103, 1195–1208 (2022).

    Article 

    Google Scholar 

  • Egbueri, J. C., Igwe, O., Omeka, M. E. & Agbasi, J. C. Development of MLR and variedly optimized ANN models for forecasting the detachability and liquefaction potential index of erodible soils. Geosyst. Geoenviron. 2, 100104 (2023).

    Article 

    Google Scholar 

  • Jangir, H. K. & Satavalekar, R. Evaluating Adaptive Neuro-Fuzzy Inference System (ANFIS) to assess liquefaction potential and settlements using CPT test data. J. Soft Comput. Civ. Eng. 6, 119–139 (2022).

  • Zhang, Y., Qiu, J., Zhang, Y. & Wei, Y. The adoption of ELM to the prediction of soil liquefaction based on CPT. Nat. Hazards 107, 539–549 (2021).

    Article 

    Google Scholar 

  • Cai, M. et al. Integrating the LSSVM and RBFNN models with three optimization algorithms to predict the soil liquefaction potential. Eng. Comput. 38, 3611–3623 (2022).

    Article 

    Google Scholar 

  • Zhou, J., Huang, S., Wang, M. & Qiu, Y. Performance evaluation of hybrid GA–SVM and GWO–SVM models to predict earthquake-induced liquefaction potential of soil: a multi-dataset investigation. Eng. Comput. 38, 4197–4215 (2022).

    Article 

    Google Scholar 

  • Zhang, J. & Wang, Y. An ensemble method to improve prediction of earthquake-induced soil liquefaction: A multi-dataset study. Neural Comput. Appl. 33, 1533–1546 (2021).

    Article 

    Google Scholar 

  • Taleb Bahmed, I. et al. Prediction of geotechnical properties of clayey soils stabilised with lime using artificial neural networks (ANNs). Int. J. Geotech. Eng. 13, 191–203 (2019).

    Article 
    CAS 

    Google Scholar 

  • Zhang, P., Yin, Z.-Y. & Jin, Y.-F. Machine learning-based modelling of soil properties for geotechnical design: Review, tool development and comparison. Arch. Comput. Methods Eng. 29, 1229–1245 (2022).

    Article 

    Google Scholar 

  • Ozsagir, M., Erden, C., Bol, E., Sert, S. & Özocak, A. Machine learning approaches for prediction of fine-grained soils liquefaction. Comput. Geotech. 152, 105014 (2022).

    Article 

    Google Scholar 

  • Liu, C. et al. The role of TBM asymmetric tail-grouting on surface settlement in coarse-grained soils of urban area: Field tests and FEA modelling. Tunnel. Underground Space Technol. 111, 103857 (2021).

    Article 

    Google Scholar 

  • Taffese, W. Z. & Abegaz, K. A. Prediction of compaction and strength properties of amended soil using machine learning. Buildings. https://doi.org/10.3390/buildings12050613 (2022).

    Article 

    Google Scholar 

  • Ghani, S., Kumari, S. & Ahmad, S. Prediction of the seismic effect on liquefaction behavior of fine-grained soils using artificial intelligence-based hybridized modeling. Arab. J. Sci. Eng. 47, 5411–5441 (2022).

    Article 

    Google Scholar 

  • Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using soft computing techniques. J. Inst. Eng. India Series A. 103, 1195–1208 (2022).

    Article 
    ADS 

    Google Scholar 

  • Zhou, J., Huang, S., Zhou, T., Armaghani, D. J. & Qiu, Y. Employing a genetic algorithm and grey wolf optimizer for optimizing RF models to evaluate soil liquefaction potential. Artif. Intell. Rev. 55, 5673–5705 (2022).

    Article 

    Google Scholar 

  • Ahmad, M., Tang, X. & Ahmad, F. Evaluation of liquefaction-induced settlement using random forest and REP tree models: taking pohang earthquake as a case of illustration. in Natural Hazards-Impacts, Adjustments and Resilience (IntechOpen, 2020).

  • Bairwa, A. K., Joshi, S. & Singh, D. Dingo optimizer: A nature-inspired metaheuristic approach for engineering problems. Math. Probl. Eng. 2021, 2571863 (2021).

    Article 

    Google Scholar 

  • Berrill, J. B. & Davis, R. O. Energy dissipation and seismic liquefaction of sands: Revised model. Soils Foundations 25, 106–118 (1985).

    Article 

    Google Scholar 

  • Baziar, M. H., Jafarian, Y., Shahnazari, H., Movahed, V. & Amin Tutunchian, M. Prediction of strain energy-based liquefaction resistance of sand–silt mixtures: An evolutionary approach. Comput. Geosci. 37, 1883–1893 (2011).

    Article 
    ADS 

    Google Scholar 

  • Tao, M. Case History Verification of the Energy Method to Determine the Liquefaction Potential of Soil Deposits. (Case Western Reserve University, 2003).

  • Rokoff, M. D. The influence of grain-size characteristics in determining the liquefaction potential of a soil deposit by the energy method. (1999).

  • Kanagalingam, T. Liquefaction Resistance of Granular Mixes Based on Contact Density and Energy Considerations. (State University of New York at Buffalo, 2006).

  • Ahmad, M., Tang, X.-W., Qiu, J.-N. & Ahmad, F. Interpretive structural modeling and MICMAC analysis for identifying and benchmarking significant factors of seismic soil liquefaction. Appl. Sci. https://doi.org/10.3390/app9020233 (2019).

    Article 

    Google Scholar 

  • Heddam, S. et al. Chapter 1—Predicting dissolved oxygen concentration in river using new advanced machines learning: Long-short term memory (LSTM) deep learning. in (ed. Pourghasemi, H. R. B. T.-C. in E. and E. S.) 1–20 (Elsevier, 2022). https://doi.org/10.1016/B978-0-323-89861-4.00031-2.

  • Parveen, N., Zaidi, S. & Danish, M. Development of SVR-based model and comparative analysis with MLR and ANN models for predicting the sorption capacity of Cr(VI). Process Safety Environ. Protect. 107, 428–437 (2017).

    Article 
    CAS 

    Google Scholar 

  • Were, K., Bui, D. T., Dick, Ø. B. & Singh, B. R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 52, 394–403 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kaingo, J., Tumbo, S. D., Kihupi, N. I. & Mbilinyi, B. P. Prediction of soil moisture-holding capacity with support vector machines in dry subhumid tropics. Appl. Environ. Soil Sci. 2018, 9263296 (2018).

    Article 

    Google Scholar 

  • Tabarsa, A., Latifi, N., Osouli, A. & Bagheri, Y. Unconfined compressive strength prediction of soils stabilized using artificial neural networks and support vector machines. Front. Struct. Civ. Eng. 15, 520–536 (2021).

    Article 

    Google Scholar 

  • Huang, G. B., Zhu, Q. Y. & Siew, C. K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).

    Article 

    Google Scholar 

  • Masood, A., Niazkar, M., Zakwan, M. & Piraei, R. A machine learning-based framework for water quality index estimation in the Southern Bug River. Water. https://doi.org/10.3390/w15203543 (2023).

    Article 

    Google Scholar 

  • Masood, A. et al. Improving PM2.5 prediction in New Delhi using a hybrid extreme learning machine coupled with snake optimization algorithm. Sci. Rep. 13, 1–17 (2023).

    Article 

    Google Scholar 

  • Zhang, J., Li, Y., Xiao, W. & Zhang, Z. Non-iterative and fast deep learning: multilayer extreme learning machines. J. Franklin. Inst. 357, 8925–8955 (2020).

    Article 

    Google Scholar 

  • Ding, S., Xu, X. & Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 25, 549–556 (2014).

    Article 
    ADS 

    Google Scholar 

  • Wang, J., Lu, S., Wang, S.-H. & Zhang, Y.-D. A review on extreme learning machine. Multimed. Tools Appl. 81, 41611–41660 (2022).

    Article 

    Google Scholar 

  • Kang, M., Chen, H. & Dong, J. Adaptive visual servoing with an uncalibrated camera using extreme learning machine and Q-leaning. Neurocomputing 402, 384–394 (2020).

    Article 

    Google Scholar 

  • Hameed, M. M., Mohd Razali, S. F., Wan Mohtar, W. H. M., Ahmad Alsaydalani, M. O. & Yaseen, Z. M. Deep learning versus hybrid regularized extreme learning machine for multi-month drought forecasting: A comparative study and trend analysis in tropical region. Heliyon 10, e22942 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Hameed, M. M., Razali, S. F. M., Mohtar, W. H. M. W., Rahman, N. A. & Yaseen, Z. M. Machine learning models development for accurate multi-months ahead drought forecasting: Case study of the Great Lakes, North America. PLoS One 18, e0290891 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghani, S., Kumari, S. & Bardhan, A. A novel liquefaction study for fine-grained soil using PCA-based hybrid soft computing models. Sādhanā 46, 113 (2021).

    Article 

    Google Scholar 

  • Wang, J., Lu, S., Wang, S. H. & Zhang, Y. D. A review on extreme learning machine. Multimed. Tools Appl. 81, 41611–41660 (2021).

    Article 

    Google Scholar 

  • Almazán-Covarrubias, J. H., Peraza-Vázquez, H., Peña-Delgado, A. F. & García-Vite, P. M. An improved Dingo optimization algorithm applied to SHE-PWM modulation strategy. Appl. Sci. 12, 992 (2022).

    Article 

    Google Scholar 

  • Peraza-Vázquez, H. et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies. Math. Probl. Eng. 2021, 9107547 (2021).

    Article 

    Google Scholar 

  • Ramya, K. & Ayothi, S. Hybrid dingo and whale optimization algorithm-based optimal load balancing for cloud computing environment. Trans. Emerg. Telecommun. Technol. 34, e4760 (2023).

    Article 

    Google Scholar 

  • Nayak, S. R., Khadanga, R. K., Arya, Y., Panda, S. & Sahu, P. R. Influence of ultra-capacitor on AGC of five-area hybrid power system with multi-type generations utilizing sine cosine adopted dingo optimization algorithm. Electr. Power Syst. Res. 223, 109513 (2023).

    Article 

    Google Scholar 

  • Cai, W. & Duan, F. Task scheduling for federated learning in edge cloud computing environments by using adaptive-greedy dingo optimization algorithm and Binary Salp Swarm Algorithm. Future Internet. https://doi.org/10.3390/fi15110357 (2023).

    Article 

    Google Scholar 

  • Muazu, A. A., Hashim, A. S. & Sarlan, A. Review of nature inspired metaheuristic algorithm selection for combinatorial t-way testing. IEEE Access 10, 27404–27431 (2022).

    Article 

    Google Scholar 

  • Zaghloul, M. S., Hamza, R. A., Iorhemen, O. T. & Tay, J. H. Comparison of adaptive neuro-fuzzy inference systems (ANFIS) and support vector regression (SVR) for data-driven modelling of aerobic granular sludge reactors. J. Environ. Chem. Eng. 8, 103742 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ghani, S. & Kumari, S. Plasticity-based liquefaction prediction using support vector machine and adaptive neuro-fuzzy inference system. Lecture Notes Civ. Eng. 300, 515–527 (2023).

    Article 

    Google Scholar 

  • Deif, M., Hammam, R. & Solyman, A. Adaptive neuro-fuzzy inference system (ANFIS) for rapid diagnosis of COVID-19 cases based on routine blood tests. Int. J. Intel. Eng. Syst. 14, 178–189 (2021).

    Google Scholar 

  • Tulla, P. S. et al. Daily suspended sediment yield estimation using soft-computing algorithms for hilly watersheds in a data-scarce situation: a case study of Bino watershed, Uttarakhand. Theor. Appl. Climatol. 155, 4023–4047. https://doi.org/10.1007/s00704-024-04862-5 (2024).

  • Ehteram, M. et al. Performance improvement for infiltration rate prediction using hybridized Adaptive Neuro-Fuzzy Inferences System (ANFIS) with optimization algorithms. Ain Shams Eng. J. 12, 1665–1676 (2021).

    Article 

    Google Scholar 

  • Babanezhad, M., Masoumian, A., Nakhjiri, A. T., Marjani, A. & Shirazian, S. Influence of number of membership functions on prediction of membrane systems using adaptive network based fuzzy inference system (ANFIS). Sci. Rep. 10, 16110 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanagaraj, N. An adaptive neuro-fuzzy inference system to improve fractional order controller performance. Intell. Autom. Soft Comput. 35 (2023).

  • Adnan, R. M. et al. Enhancing accuracy of extreme learning machine in predicting river flow using improved reptile search algorithm. Stochastic Environ. Res. Risk Assessment 37, 3063–3083 (2023).

    Article 

    Google Scholar 

  • Adeleke, O., Akinlabi, S. A., Jen, T. C. & Dunmade, I. Prediction of municipal solid waste generation: An investigation of the effect of clustering techniques and parameters on ANFIS model performance. Environ. Technol. 43, 1634–1647 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hussain, W., Merigó, J. M., Raza, M. R. & Gao, H. A new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means, subtractive clustering and grid partitioning. Inf. Sci. (N Y) 584, 280–300 (2022).

    Article 

    Google Scholar 

  • Jafari, M. M., Ojaghlou, H., Zare, M. & Schumann, G. J. P. Application of a novel hybrid wavelet-ANFIS/fuzzy C-means clustering model to predict groundwater fluctuations. Atmosphere. 12, 9 (2020).

    Article 
    ADS 

    Google Scholar 

  • Chen, W., Chen, X., Peng, J., Panahi, M. & Lee, S. Landslide susceptibility modeling based on ANFIS with teaching-learning-based optimization and Satin bowerbird optimizer. Geosci. Front. 12, 93–107 (2021).

    Article 

    Google Scholar 

  • Yilmaz, S., Ilhan, R. & Feyzullahoğlu, E. Estimation of adhesive wear behavior of the glass fiber reinforced polyester composite materials using ANFIS model. J. Elastomers Plastics 54, 86–110 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pramod, C. P. & Pillai, G. N. K-Means clustering based Extreme Learning ANFIS with improved interpretability for regression problems. Knowl. Based Syst. 215, 106750 (2021).

    Article 

    Google Scholar 

  • Kumar, R., Sahu, M. & Mohdiwale, S. Two class motor imagery classification based on ANFIS. Lecture Notes Electr. Eng. 601, 703–711 (2020).

    Article 

    Google Scholar 

  • Pham, B. T., Son, L. H., Hoang, T.-A., Nguyen, D.-M. & Tien Bui, D. Prediction of shear strength of soft soil using machine learning methods. Catena (Amst). 166, 181–191 (2018).

    Article 

    Google Scholar 

  • Pham, B. T. et al. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. Catena (Amst) 173, 302–311 (2019).

    Article 

    Google Scholar 

  • Tunçay, T., Alaboz, P., Dengiz, O. & Başkan, O. Application of regression kriging and machine learning methods to estimate soil moisture constants in a semi-arid terrestrial area. Comput. Electron. Agric. 212, 108118 (2023).

    Article 

    Google Scholar 

  • Iqbal, M., Onyelowe, K. C. & Jalal, F. E. Smart computing models of California bearing ratio, unconfined compressive strength, and resistance value of activated ash-modified soft clay soil with adaptive neuro-fuzzy inference system and ensemble random forest regression techniques. Multisc. Multidiscip. Model. Exp. Design 4, 207–225 (2021).

    Article 

    Google Scholar 

  • Hameed, M. M., Mohd Razali, S. F., Wan Mohtar, W. H. M. & Yaseen, Z. M. Improving multi-month hydrological drought forecasting in a tropical region using hybridized extreme learning machine model with Beluga Whale Optimization algorithm. Stochastic Environ. Res. Risk Assessment. 37, 4963–4989 (2023).

    Article 

    Google Scholar 

  • Masood, A. & Ahmad, K. Prediction of PM2.5 concentrations using soft computing techniques for the megacity Delhi, India. Stochastic Environ. Res. Risk Assessment 37, 625–638 (2023).

    Article 

    Google Scholar 

  • Hameed, M. M., Khaleel, F., AlOmar, M. K., Mohd Razali, S. F. & Alsaadi, M. A. Optimising the selection of input variables to increase the predicting accuracy of shear strength for deep beams. Complexity 2022, (2022).

  • Hameed, M. M., Abed, M. A., Al-Ansari, N. & Alomar, M. K. Predicting compressive strength of concrete containing industrial waste materials: Novel and hybrid machine learning model. Adv. Civ. Eng. 2022, 5586737 (2022).

    Google Scholar 

  • Mamata, R., Ramlia, A., et al. (2022). Slope stability prediction of road embankment using artificial neural network combined with genetic algorithm. journalarticle.ukm.myRC Mamata, A Ramlia, MRM Yazidb, A Kasab, SFM Razalib, MN BastamcJurnal Kejuruteraan, 2022•journalarticle.ukm.my.

  • al_goodplot—boxblot & violin plot—File Exchange – MATLAB Central. https://www.mathworks.com/matlabcentral/fileexchange/91790-al_goodplot-boxblot-violin-plot.

  • Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using hybrid ANN with optimization techniques. Arab. J. Geosci. 15, 1–21 (2022).

    Article 

    Google Scholar 

  • Ghani, S. & Kumari, S. Prediction of soil liquefaction for railway embankment resting on fine soil deposits using enhanced machine learning techniques. J. Earth Syst. Sci. 132, 145 (2023).

    Article 
    ADS 

    Google Scholar 

  • Kumar, D. R., Samui, P. & Burman, A. Prediction of probability of liquefaction using hybrid ANN with optimization techniques. Arab. J. Geosci. 15, (2022).

  • Mohammed, M., Sharafati, A., Al-Ansari, N. & Yaseen, Z. M. Shallow foundation settlement quantification: Application of hybridized adaptive neuro-fuzzy inference system model. Adv. Civ. Eng. 2020, (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *