The Importance of Deep Learning-Based Platforms to Combat Illegal Trade in Cultural Heritage

Machine Learning


  • Visconti, A. etc Criminal offences against cultural heritage in the Italian legal framework from Law No. 22 of 9 March 2023 (2023) onwards.

  • Blake, J. International Cultural Heritage Law (OUP Oxford, 2015).

  • Schloenhardt, A., Calderoni, F., Lelliott, J., Weißer, B. United Nations Convention against Transnational Organized Crime: Commentary (Oxford University Press, 2023).

  • Ramot, K.R. UNESCO: Convention on the Protection of the Underwater Cultural Heritage. International Leg Mechanic 4137–56 (2002).

    Article Google Scholar

  • of Europe, C. & de l'Europe, C. Council of Europe Convention on Crimes Relating to Cultural Property (Nicosia, 19 May 2017). Uniform Law Reform twenty three656–691 (2018).

  • Brody, N. Stolen History: Plunder and Illicit Trade. Museums International 5510–22 (2003).

    Article Google Scholar

  • Campbell, P.B. The illicit antiquities trade as a transnational criminal network: characteristics and predictions of cultural heritage trafficking. International Journal of CultProp 20113–153 (2013).

    Article Google Scholar

  • Brody, N. etc Why does illegal trade in cultural property continue, and what can we do about it? J. Field Archaeology. 47117–130 (2022).

    Article Google Scholar

  • Abate, D. etc Significance: Using artificial intelligence to stop illegal cultural heritage trafficking. International Architecture Photography Remote Sensing Space Information Science 43729–736 (2022).

    Article Google Scholar

  • Abate, D. etc Artificial intelligence to combat illegal trade in cultural property. International Architecture Photography Remote Sensing Space Information Science 483–10 (2023).

    Article Google Scholar

  • Ruggeri, F., Lagioia, F., Lippi, M. & Torroni, P. Detecting and explaining unfairness in consumer contracts with memory networks. Artificial Intelligence Law 3059–92 (2022).

    Article Google Scholar

  • Zaccagnino, CC & Malandrino, D. Analysis of touch gestures for online child protection: Technological regulation and intelligent protection measures. Multimed.Tools Application. 8015803–15824 (2021).

    Article Google Scholar

  • Guarino, A., Malandrino, D., Zaccagnino, R. Automatic mechanisms for providing privacy awareness and controlling the unintentional dissemination of personal information online. Computer Network 202108614 (2022).

    Article Google Scholar

  • Pansoni, S., Tiribelli, S., Frontoni, E. and Giovanola, B. Designing an ethical framework for artificial intelligence in cultural heritage. 2023 IEEE International Symposium on Ethics in Engineering, Science, and Technology (ETHICS),1–5 (IEEE, 2023).

  • Pansoni, S., Tiribelli, S., Frontoni, E. & Giovanola, B. Artificial intelligence and cultural heritage: designing and evaluating an ethical framework. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciencespp. 1149–1155 (2023).

  • Hurtut, T., Gousseau, Y., Cheriet, F., Schmitt, F. Retrieval of artistic line drawings based on image content. J. Comput. Cult. Herit. (JOCCH) Four1–23 (2011).

    Article Google Scholar

  • Makridis, M. & Daras, P. Automated classification of archaeological pottery sherds. J. Computer Cultural Heritage (JOCCH) Five1–21 (2013).

    Google Academic

  • Can, G., Odobez, J.-M., Gatica-Perez, D. Evaluating shape representations for Mayaglyph classification. J. Computer Cultural Heritage (JOCCH) 91–26 (2016).

    Article Google Scholar

  • Hu, R., Odobez, J.-M., Gatica-Perez, D. Extracting Mayan inscriptions from degraded ancient documents using image segmentation. J. Computer Cultural Heritage (JOCCH) Ten1–23 (2017).

    Article Google Scholar

  • Bevis, G. etc Advances in Visual Computing: Seventh International Symposium, ISVC 2011, Las Vegas, NV, USA, September 26-28, 2011. Proceedings, Part IVolume 6938 (Springer, 2011).

  • Mathias, M., Martinovic, A., Weissenberg, J., Haegler, S., Van Gool, L. Automatic architectural style recognition. International Architecture Photography Remote Sensing Space Information Science 38171–176 (2012).

    Article Google Scholar

  • Chu, W.-T. & Tsai, M.-H. Visual pattern discovery for architectural image classification and product image retrieval. Proceedings of the 2nd ACM International Conference on Multimedia Retrieval.1–8 (2012).

  • Goel, A., Juneja, M., Jawahar, C. Are buildings just examples? An exploration of architectural style categories. Proceedings of the 8th Indian Conference on Computer Vision, Graphics and Image Processing.1–8 (2012).

  • Oses, N. & Dornaika, F. Image-based depiction of architectural heritage stone masonry for automatic classification. Image Analysis and Recognition: 10th International Conference, ICIAR 2013, Póvoa do Varzim, Portugal, June 26-28, 2013. Proceedings 10782–789 (Springer, 2013).

  • Zhang, L. etc Architectural style recognition via hierarchical sparse coding of blocklets. Information science 254141–154 (2014).

    Article Google Scholar

  • Xu, Z., Tao, D., Zhang, Y., Wu, J. & Tsoi, A.C. Classification of architectural styles using multinomial latent logistic regression. Computer Vision – ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13600–615 (Springer, 2014).

  • Amato, G., Falchi, F., Gennaro, C. Fast image classification for monument recognition. J. Comput. Cult. Herit. (JOCCH) 81–25 (2015).

    Article Google Scholar

  • Chen, H. etc Deep learning CNN architecture applied to smart near-infrared analysis of water pollution in agricultural irrigation resources. Agriculture, Water Management 240106303 (2020).

    Article Google Scholar

  • Pandit, V., Schmitt, M., Cummins, N., and Schuller, B. “You Can See It in Your Eyes: Training a Shallow-As-Possible CNN for Real-Time Recognition of Emotion and Pain from Muted, Web-Assisted, Real-World Video Chats.” Information Process Management 57102347 (2020).

    Article Google Scholar

  • Li, C., Bao, Z., Li, L., Zhao, Z. Temporal representation exploration leveraging attention-based bidirectional lstm-rnn for multimodal emotion recognition. Information Process Management 57102185 (2020).

    Article Google Scholar

  • Ćosović, M. & Janković, R. CNN classification of cultural heritage images. 2020 19th International Symposium INFOTEH-JAHORINA (INFOTEH),1–6 (IEEE, 2020).

  • Kulkarni, U., Meena, S., Gurlahosur, SV & Mudengudi, U. Cultural heritage classification using transfer learning. 2019 IEEE 5th International Conference on Multimedia Big Data (BigMM)391–397 (IEEE, 2019).

  • Llamas, J., M. Lerones, P., Medina, R., Zalama, E., Gómez-García-Bermejo, J. Classification of architectural heritage images using deep learning techniques. Applied Science 7992 (2017).

  • Fan, T., Wang, H., Deng, S. Intangible cultural heritage image classification using multimodal attention and hierarchical fusion. Expert System Applications 120555 (2023).

  • Winterbottom, T., Leone, A., Al Moubayed, N. A deep learning approach to combating illegal trade in antiquities using artifact instance classification. Scientific Representative 1213468 (2022).

    Paper ADS CAS PubMed PubMed Central Google Scholar

  • Amato, G., Falchi, F., Vadicamo, L. Visual recognition of ancient inscriptions using convolutional neural networks and Fisher vectors. J. Computer Cultural Heritage (JOCCH) 91–24 (2016).

    Article Google Scholar

  • Guber, T. A translation approach to portable ontologies. Nour Akius Five(2), 199-229 (1993).

    Article Google Scholar

  • Guarino, N. Formal Ontologies in Information Systems: Proceedings of the 1st International Conference (fois'98), 6-8 June, Trento, Italy (Volume 46) (IOS Press, 1998).

  • Silla, F. A., C. N. An investigation of hierarchical classification across different application domains. Data Minimum Knowledge Discovery twenty two31–72 (2022).

  • Huang, K.S., J. & Zabih, R. An automatic hierarchical image classification scheme. 219–228 (ACM, 1998).

  • Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. https://doi.org/10.48550/ARXIV.1409.1556 (2014).

  • Russakovsky, O. etc Imagenet large scale visual recognition challenge. International Journal of Computer Vision 115211–252. https://doi.org/10.1007/s11263-015-0816-y (2015).

    Article MathSciNet Google Scholar



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *