Ediger, M. D., Angell, C. A. & Nagel, S. R. Supercooled liquids and glasses. J. Phys. Chem. 100, 13200–13212 (1996).
Google Scholar
Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).
Google Scholar
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Google Scholar
Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021).
Google Scholar
Royall, C. P. & Williams, S. R. The role of local structure in dynamical arrest. Phys. Rep. 560, 1–75 (2015).
Google Scholar
Tanaka, H., Tong, H., Shi, R. & Russo, J. Revealing key structural features hidden in liquids and glasses. Nat. Rev. Phys. 1, 333–348 (2019).
Google Scholar
Marín-Aguilar, S., Wensink, H. H., Foffi, G. & Smallenburg, F. Tetrahedrality dictates dynamics in hard sphere mixtures. Phys. Rev. Lett. 124, 208005 (2020).
Google Scholar
Richard, D. et al. Predicting plasticity in disordered solids from structural indicators. Phys. Rev. Mater. 4, 113609 (2020).
Boattini, E. et al. Autonomously revealing hidden local structures in supercooled liquids. Nat. Commun. 11, 5479 (2020).
Google Scholar
Paret, J., Jack, R. L. & Coslovich, D. Assessing the structural heterogeneity of supercooled liquids through community inference. J. Chem. Phys. 152, 144502 (2020).
Google Scholar
Oyama, N., Koyama, S. & Kawasaki, T. What do deep neural networks find in disordered structures of glasses? Front. Phys. 10, 1320 (2023).
Google Scholar
Soltani, S., Sinclair, C. W. & Rottler, J. Exploring glassy dynamics with Markov state models from graph dynamical neural networks. Phys. Rev. E 106, 025308 (2022).
Google Scholar
Widmer-Cooper, A. & Harrowell, P. Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities. Phys. Rev. Lett. 96, 185701 (2006).
Google Scholar
Widmer-Cooper, A., Perry, H., Harrowell, P. & Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 4, 711–715 (2008).
Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).
Google Scholar
Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).
Google Scholar
Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using machine-learning methods. Phys Rev. Lett. 114, 108001 (2015).
Google Scholar
Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).
Google Scholar
Yang, Z.-Y., Wei, D., Zaccone, A. & Wang, Y.-J. Machine-learning integrated glassy defect from an intricate configurational-thermodynamic-dynamic space. Phys. Rev. B 104, 064108 (2021).
Google Scholar
Boattini, E., Smallenburg, F. & Filion, L. Averaging local structure to predict the dynamic propensity in supercooled liquids. Phys. Rev. Lett. 127, 088007 (2021).
Google Scholar
Alkemade, R. M., Boattini, E., Filion, L. & Smallenburg, F. Comparing machine learning techniques for predicting glassy dynamics. J. Chem. Phys. 156, 204503 (2022).
Google Scholar
Shiba, H., Hanai, M., Suzumura, T. & Shimokawabe, T. BOTAN: BOnd TArgeting Network for prediction of slow glassy dynamics by machine learning relative motion. J. Chem. Phys. 158, 084503 (2023).
Google Scholar
Alkemade, R. M., Smallenburg, F. & Filion, L. Improving the prediction of glassy dynamics by pinpointing the local cage. J. Chem. Phys. 158, 134512 (2023).
Google Scholar
Ciarella, S., Chiappini, M., Boattini, E., Dijkstra, M. & Janssen, L. M. C. Dynamics of supercooled liquids from static averaged quantities using machine learning. Mach. Learn. Sci. Technol. 4, 025010 (2023).
Google Scholar
Pezzicoli, F. S., Charpiat, G. & Landes, F. P. Rotation-equivariant graph neural networks for learning glassy liquids representations. SciPost Phys. 16, 136 (2024).
Google Scholar
Ruiz-Garcia, M. et al. Discovering dynamic laws from observations: the case of self-propelled, interacting colloids. Phys. Rev. E 109, 064611 (2024).
Jung, G., Biroli, G. & Berthier, L. Predicting dynamic heterogeneity in glass-forming liquids by physics-inspired machine learning. Phys. Rev. Lett. 130, 238202 (2023).
Google Scholar
Zhang, G. et al. Structuro-elasto-plasticity model for large deformation of disordered solids. Phys. Rev. Res. 4, 043026 (2022).
Google Scholar
Jung, G. GlassBench. zenodo https://doi.org/10.5281/zenodo.10118191 (2023).
Kob, W. & Andersen, H. C. Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: the van Hove correlation function. Phys. Rev. E 51, 4626–4641 (1995).
Google Scholar
Tarjus, G., Kivelson, D. & Viot, P. The viscous slowing down of supercooled liquids as a temperature-controlled super-Arrhenius activated process: a description in terms of frustration-limited domains. J. Phys. Condens. Matter 12, 6497 (2000).
Google Scholar
Tanemura, M. et al. Geometrical analysis of crystallization of the soft-core model. Prog. Theor. Phys. 58, 1079–1095 (1977).
Google Scholar
Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).
Google Scholar
Honeycutt, J. D. & Andersen, H. C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987).
Google Scholar
Lazar, E. A., Han, J. & Srolovitz, D. J. A topological framework for local structure analysis in condensed matter. Proc. Natl Acad. Sci. USA 112, E5769–E5776 (2015).
Google Scholar
Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).
Google Scholar
Mehta, P. et al. A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019).
Google Scholar
Cheng, B. et al. Mapping materials and molecules. Acc. Chem. Res. 53, 1981–1991 (2020).
Google Scholar
Glielmo, A. et al. Unsupervised learning methods for molecular simulation data. Chem. Rev. 121, 9722–9758 (2021).
Google Scholar
Jarry, P. & Jakse, N. Medium range ordering in liquid Al-based alloys: towards a machine learning approach of solidification. IOP Conf. Ser. Mater. Sci. Eng. 1274, 012001 (2023).
Google Scholar
Hu, W., Singh, R. R. P. & Scalettar, R. T. Discovering phases, phase transitions, and crossovers through unsupervised machine learning: a critical examination. Phys. Rev. E 95, 062122 (2017).
Google Scholar
Rodriguez-Nieva, J. F. & Scheurer, M. S. Identifying topological order through unsupervised machine learning. Nat. Phys. 15, 790–795 (2019).
Google Scholar
Mendes-Santos, T., Turkeshi, X., Dalmonte, M. & Rodriguez, A. Unsupervised learning universal critical behavior via the intrinsic dimension. Phys. Rev. X 11, 011040 (2021).
Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
Google Scholar
Parsaeifard, B. et al. An assessment of the structural resolution of various fingerprints commonly used in machine learning. Mach. Learn. Sci. Technol. 2, 015018 (2021).
Google Scholar
Midtvedt, B. et al. Single-shot self-supervised object detection in microscopy. Nat. Commun. 13, 7492 (2022).
Google Scholar
Caro, M. A., Deringer, V. L., Koskinen, J., Laurila, T. & Csányi, G. Growth mechanism and origin of high sp3 in tetrahedral amorphous carbon. Phys. Rev. Lett. 120, 166101 (2018).
Google Scholar
Monserrat, B., Brandenburg, J. G., Engel, E. A. & Cheng, B. Liquid water contains the building blocks of diverse ice phases. Nat. Commun. 11, 5757 (2020).
Google Scholar
Coslovich, D., Jack, R. L. & Paret, J. Dimensionality reduction of local structure in glassy binary mixtures. J. Chem. Phys. 157, 204503 (2022).
Google Scholar
Banerjee, A., Hsu, H.-P., Kremer, K. & Kukharenko, O. Data-driven identification and analysis of the glass transition in polymer melts. ACS Macro Lett. 12, 679–684 (2023).
Google Scholar
Banerjee, A., Iscen, A., Kremer, K. & Kukharenko, O. Determining glass transition in all-atom acrylic polymeric melt simulations using machine learning. J. Chem. Phys. 159, 074108 (2023).
Google Scholar
Offei-Danso, A., Hassanali, A. & Rodriguez, A. High-dimensional fluctuations in liquid water: combining chemical intuition with unsupervised learning. J. Chem. Theory Comput. 18, 3136–3150 (2022).
Google Scholar
Campadelli, P., Casiraghi, E., Ceruti, C. & Rozza, A. Intrinsic dimension estimation: relevant techniques and a benchmark framework. Math. Probl. Eng. 2015, e759567 (2015).
Google Scholar
Parsaeifard, B. & Goedecker, S. Manifolds of quasi-constant SOAP and ACSF fingerprints and the resulting failure to machine learn four-body interactions. J. Chem. Phys. 156, 034302 (2022).
Google Scholar
Darby, J. P., Kermode, J. R. & Csányi, G. Compressing local atomic neighbourhood descriptors. npj Comput. Mater. 8, 1–13 (2022).
Darby, J. P. et al. Tensor-reduced atomic density representations. Phys. Rev. Lett. 131, 028001 (2023).
Google Scholar
Coslovich, D., Ozawa, M. & Berthier, L. Local order and crystallization of dense polydisperse hard spheres. J. Phys. Condens. Matter 30, 144004 (2018).
Google Scholar
Tong, H. & Tanaka, H. Emerging exotic compositional order on approaching low-temperature equilibrium glasses. Nat. Commun. 14, 4614 (2023).
Google Scholar
Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).
Google Scholar
Sheng, H., Luo, W., Alamgir, F., Bai, J. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).
Google Scholar
Montes de Oca, J. M., Sciortino, F. & Appignanesi, G. A. A structural indicator for water built upon potential energy considerations. J. Chem. Phys. 152, 244503 (2020).
Google Scholar
Faccio, C., Benzi, M., Zanetti-Polzi, L. & Daidone, I. Low- and high-density forms of liquid water revealed by a new medium-range order descriptor. J. Mol. Liq. 355, 118922 (2022).
Google Scholar
Mauro, J. C., Tandia, A., Vargheese, K. D., Mauro, Y. Z. & Smedskjaer, M. M. Accelerating the design of functional glasses through modeling. Chem. Mater. 28, 4267–4277 (2016).
Google Scholar
Cassar, D. R. et al. Predicting and interpreting oxide glass properties by machine learning using large datasets. Ceram. Int. 47, 23958–23972 (2021).
Google Scholar
Bødker, M. L., Bauchy, M., Du, T., Mauro, J. C. & Smedskjaer, M. M. Predicting glass structure by physics-informed machine learning. npj Comput. Mater. 8, 192 (2022).
Google Scholar
Bhattoo, R. et al. Artificial intelligence and machine learning in glass science and technology: 21 challenges for the 21st century. Int. J. Appl. Glass Sci. 12, 277–292 (2021).
Doliwa, B. & Heuer, A. What does the potential energy landscape tell us about the dynamics of supercooled liquids and glasses? Phys. Rev. Lett. 91, 235501 (2003).
Google Scholar
Hocky, G. M., Coslovich, D., Ikeda, A. & Reichman, D. R. Correlation of local order with particle mobility in supercooled liquids is highly system dependent. Phys. Rev. Lett. 113, 157801 (2014).
Google Scholar
Tong, H. & Tanaka, H. Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids. Phys. Rev. X 8, 011041 (2018).
Schoenholz, S. S., Cubuk, E. D., Kaxiras, E. & Liu, A. J. Relationship between local structure and relaxation in out-of-equilibrium glassy systems. Proc. Natl Acad. Sci. USA 114, 263–267 (2017).
Google Scholar
Sussman, D. M., Schoenholz, S. S., Cubuk, E. D. & Liu, A. J. Disconnecting structure and dynamics in glassy thin films. Proc. Natl Acad. Sci. USA 114, 10601–10605 (2017).
Google Scholar
Cubuk, E. D. et al. Structure-property relationships from universal signatures of plasticity in disordered solids. Science 358, 1033–1037 (2017).
Google Scholar
Harrington, M., Liu, A. J. & Durian, D. J. Machine learning characterization of structural defects in amorphous packings of dimers and ellipses. Phys. Rev. E 99, 022903 (2019).
Google Scholar
Ma, X. et al. Heterogeneous activation, local structure, and softness in supercooled colloidal liquids. Phys Rev. Lett.122, 028001 (2019).
Google Scholar
Cubuk, E. D., Liu, A. J., Kaxiras, E. & Schoenholz, S. S. Unifying framework for strong and fragile liquids via machine learning: a study of liquid silica. Preprint at https://doi.org/10.48550/arXiv.2008.09681 (2020).
Ridout, S. A., Rocks, J. W. & Liu, A. J. Correlation of plastic events with local structure in jammed packings across spatial dimensions. Proc. Natl Acad. Sci. USA 119, e2119006119 (2022).
Google Scholar
Tah, I., Ridout, S. A., & Liu, A. J. Fragility in glassy liquids: a structural approach based on machine learning. J. Chem. Phys.157, 124501 (2022).
Google Scholar
Liu, H., Smedskjaer, M. M. & Bauchy, M. Deciphering a structural signature of glass dynamics by machine learning. Phys. Rev. B 106, 214206 (2022).
Google Scholar
Zhang, G., Ridout, S. A. & Liu, A. J. Interplay of rearrangements, strain, and local structure during avalanche propagation. Phys. Rev. X 11, 041019 (2021).
Xiao, H. et al. Machine learning-informed structuro-elastoplasticity predicts ductility of disordered solids. Preprint at https://doi.org/10.48550/arXiv.2303.12486 (2023).
Widmer-Cooper, A., Harrowell, P. & Fynewever, H. How reproducible are dynamic heterogeneities in a supercooled liquid? Phys. Rev. Lett. 93, 135701 (2004).
Google Scholar
Berthier, L. & Jack, R. L. Structure and dynamics of glass formers: predictability at large length scales. Phys. Rev. E 76, 041509 (2007).
Google Scholar
Jung, G., Biroli, G. & Berthier, L. Dynamic heterogeneity at the experimental glass transition predicted by transferable machine learning. Phys. Rev. B 109, 064205 (2024).
Google Scholar
Berthier, L., Biroli, G., Bouchaud, J.-P., Cipelletti, L. & Saarloos, W. Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).
Gidaris, S., Singh, P. & Komodakis, N. Unsupervised representation learning by predicting image rotations. Preprint at https://doi.org/10.48550/arXiv.1803.07728 (2018).
Toninelli, C., Wyart, M., Berthier, L., Biroli, G. & Bouchaud, J.-P. Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios. Phys. Rev. E 71, 041505 (2005).
Google Scholar
Kingma, D. P. et al. An introduction to variational autoencoders. Found. Trends Mach. Learn. 12, 307–392 (2019).
Google Scholar
Wang, Q. & Zhang, L. Inverse design of glass structure with deep graph neural networks. Nat. Commun. 12, 5359 (2021).
Google Scholar
Kivelson, S. & Kivelson, S. Understanding complexity. Nat. Phys. 14, 426–427 (2018).
Google Scholar
Wang, Q. et al. Predicting the propensity for thermally activated β events in metallic glasses via interpretable machine learning. npj Comput. Mater. 6, 194 (2020).
Google Scholar
Miao, S., Liu, M. & Li, P. Interpretable and generalizable graph learning via stochastic attention mechanism. In Proc. 39th International Conference on Machine Learning, Volume 162 of Proceedings of Machine Learning Research (eds Chaudhuri, K. et al.) 15524–15543 (PMLR, 2022).
Duede, E. Deep learning opacity in scientific discovery. Philos. Sci. 90, 1089–1099 (2023).
Google Scholar
Glielmo, A., Zeni, C., Cheng, B., Csányi, G. & Laio, A. Ranking the information content of distance measures. PNAS Nexus 1, pgac039 (2022).
Sandberg, J., Voigtmann, T., Devijver, E. & Jakse, N. Feature selection for high-dimensional neural network potentials with the adaptive group lasso. Mach. Learn. Sci. Technol. 5, 025043 (2024).
Google Scholar
Sharma, A., Liu, C. & Ozawa, M. Selecting relevant structural features for glassy dynamics by information imbalance. J. Chem. Phys. 161, 184506 (2024).
Berthier, L., Flenner, E. & Szamel, G. Glassy dynamics in dense systems of active particles. J. Chem. Phys. 150, 200901 (2019).
Google Scholar
Janzen, G. & Janssen, L. M. C. Rejuvenation and memory effects in active glasses induced by thermal and active cycling. Phys. Rev. Res. 6, 023257 (2024).
Google Scholar
Janzen, G. et al. Dead or alive: distinguishing active from passive particles using supervised learning. Europhys. Lett. 143, 17004 (2023).
Google Scholar
Janzen, G. et al. Classifying the age of a glass based on structural properties: a machine learning approach. Phys. Rev. Mater. 8, 025602 (2024).
Google Scholar
Scalliet, C., Guiselin, B. & Berthier, L. Excess wings and asymmetric relaxation spectra in a facilitated trap model. J. Chem. Phys. 155, 064505 (2021).
Google Scholar
Guiselin, B., Scalliet, C. & Berthier, L. Microscopic origin of excess wings in relaxation spectra of supercooled liquids. Nat. Phys. 18, 468–472 (2022).
Google Scholar
Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of amorphous solids: Insights from elastoplastic models. Rev. Mod. Phys. 90, 045006 (2018).
Google Scholar
Ozawa, M. & Biroli, G. Elasticity, facilitation and dynamic heterogeneity in glass-forming liquids. Phys. Rev. Lett. 130, 138201 (2023).
Google Scholar
Tahaei, A., Biroli, G., Ozawa, M., Popović, M. & Wyart, M. Scaling description of dynamical heterogeneity and avalanches of relaxation in glass-forming liquids. Phys. Rev. X 13, 031034 (2023).
Lerbinger, M., Barbot, A., Vandembroucq, D. & Patinet, S. Relevance of shear transformations in the relaxation of supercooled liquids. Phys. Rev. Lett. 129, 195501 (2022).
Google Scholar
Chacko, R. N. et al. Elastoplasticity mediates dynamical heterogeneity below the mode coupling temperature. Phys Rev. Lett. 127, 048002 (2021).
Google Scholar
Monthus, C. & Bouchaud, J. P. Models of traps and glass phenomenology. J. Phys. A Math. Gen. 29 3847 (1996).
Google Scholar
Ridout, S. A., Tah, I. & Liu, A. J. Building a “trap model” of glassy dynamics from a local structural predictor of rearrangements. Europhys. Lett. 144, 47001 (2023).
Google Scholar
Ridout, S. A. & Liu, A. J. The dynamics of machine-learned “softness” in supercooled liquids describe dynamical heterogeneity. Preprint at https://doi.org/10.48550/arXiv.2406.05868 (2024).
Ciarella, S. et al. Finding defects in glasses through machine learning. Nat. Commun. 14, 4229 (2023).
Google Scholar
Richard, D., Kapteijns, G. & Lerner, E. Detecting low-energy quasilocalized excitations in computer glasses. Phys. Rev. E 108, 044124 (2023).
Google Scholar
Scalliet, C., Guiselin, B. & Berthier, L. Thirty milliseconds in the life of a supercooled liquid. Phys. Rev. X 12, 041028 (2022).
Google Scholar
Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).
Google Scholar
Tong, H. & Tanaka, H. Structural order as a genuine control parameter of dynamics in simple glass formers. Nat. Commun. 10, 5596 (2019).
Google Scholar
Lačević, N., Starr, F. W., Schrøder, T. B. & Glotzer, S. C. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function. J. Chem. Phys. 119, 7372–7387 (2003).
Google Scholar
Flenner, E., Zhang, M. & Szamel, G. Analysis of a growing dynamic length scale in a glass-forming binary hard-sphere mixture. Phys. Rev. E 83, 051501 (2011).
Google Scholar
Jiang, X., Tian, Z., Li, K. & Hu, W. A geometry-enhanced graph neural network for learning the smoothness of glassy dynamics from static structure. J. Chem. Phys. 159, 144504 (2023).
Google Scholar
Swendsen, R. H. & Wang, J.-S. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 57, 2607 (1986).
Google Scholar
Berthier, L., Coslovich, D., Ninarello, A. & Ozawa, M. Equilibrium sampling of hard spheres up to the jamming density and beyond. Phys. Rev. Lett. 116, 238002 (2016).
Google Scholar
Fan, Z. & Ma, E. Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nat. Commun. 12, 1506 (2021).
Google Scholar
Du, T. et al. Predicting fracture propensity in amorphous alumina from its static structure using machine learning. ACS Nano 15, 17705–17716 (2021).
Font-Clos, F. et al. Predicting the failure of two-dimensional silica glasses. Nat. Commun. 13, 2820 (2022).
Google Scholar
Liu, H., Fu, Z., Yang, K., Xu, X. & Bauchy, M. Machine learning for glass science and engineering: a review. J. Non Cryst. Solids 557, 119419 (2021).
Cassar, D. R. GlassNet: a multitask deep neural network for predicting many glass properties. Ceram. Int. 49, 36013–36024 (2023).
Google Scholar
Tandia, A., Onbasli, M. C. & Mauro, J. C. in Springer Handbook of Glass 1157–1192 (2019).
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Google Scholar
Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).
Volpe, G. et al. Roadmap on deep learning for microscopy. Preprint at https://doi.org/10.48550/arXiv.2303.03793 (2023).
Midtvedt, B., Pineda, J., Klein Morberg, H., Manzo, C. & Volpe, G. DeepTrack2. https://github.com/softmatterlab/DeepTrack2 (2024).
Gabrié, M. Mean-field inference methods for neural networks. J. Phys. A Math. Theor. 53, 223002 (2020).
Google Scholar
Merchant, A., Metz, L., Schoenholz, S. S. & Cubuk, E. D. Learn2hop: learned optimization on rough landscapes. In International Conference on Machine Learning 7643–7653 (PMLR, 2021).
Gabrié, M., Ganguli, S., Lucibello, C. & Zecchina, R. Neural networks: from the perceptron to deep nets. Preprint at https://doi.org/10.48550/arXiv.2304.06636 (2023).
Bonnaire, T. et al. High-dimensional non-convex landscapes and gradient descent dynamics. J. Stat. Mech. 104004 (2024).
Mézard, M. Spin glass theory and its new challenge: structured disorder. Indian J. Phys. 98, 3757 (2023).
Google Scholar
Vaswani, A. Attention is all you need. In 31st Conference on Neural Information Processing Systems (NIPS, 2017).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Google Scholar
Bratholm, L. A. et al. A community-powered search of machine learning strategy space to find NMR property prediction models. PLoS ONE 16, e0253612 (2021).
Qin, Y. et al. A dual-stage attention-based recurrent neural network for time series prediction. Preprint at https://doi.org/10.48550/arXiv.1704.02971 (2017).
Chapelle, O., Schölkopf, B. & Zien, A. (eds.) Semi-Supervised Learning (MIT Press, 2006).
Rong, Y. et al. Self-supervised graph transformer on large-scale molecular data. Adv. Neural Inf. Process. Syst. 33, 12559–12571 (2020).
Google Scholar
Magar, R., Wang, Y. & Barati Farimani, A. Crystal twins: self-supervised learning for crystalline material property prediction. npj Comput. Mater. 8, 231 (2022).
Google Scholar
Zhang, Z. et al. Graph self-supervised learning for optoelectronic properties of organic semiconductors. In ICML 2022 2nd AI for Science Workshop (2022).
Kaelbling, L. P., Littman, M. L. & Moore, A. W. Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237–285 (1996).
Google Scholar
Shin, K. et al. Enhancing biomolecular sampling with reinforcement learning: a tree search molecular dynamics simulation method. ACS Omega 4, 138530–13862 (2019).
Fan, C. et al. Searching for spin glass ground states through deep reinforcement learning. Nat. Commun. 14, 725 (2023).
Google Scholar
Ahuja, K., Green, W. H. & Li, Y.-P. Learning to optimize molecular geometries using reinforcement learning. J. Chem. Theory Comput. 17, 818–825 (2021).
Google Scholar
Bihani, V., Manchanda, S., Sastry, S., Ranu, S. & Krishnan, N. A. Stridernet: a graph reinforcement learning approach to optimize atomic structures on rough energy landscapes. In International Conference on Machine Learning 2431–2451 (PMLR, 2023).
Bojesen, T. A. Policy-guided Monte Carlo: reinforcement-learning Markov chain dynamics. Phys. Rev. E 98, 063303 (2018).
Google Scholar
Galliano, L., Rende, R. & Coslovich, D. Policy-guided Monte Carlo on general state spaces: application to glass-forming mixtures. J. Chem. Phys. 161, 064503 (2024).
Christiansen, H., Errica, F. & Alesiani, F. Self-tuning Hamiltonian Monte Carlo for accelerated sampling. J. Chem. Phys. 159, 234109 (2023).
Google Scholar
Gabrié, M., Rotskoff, G. M. & Vanden-Eijnden, E. Adaptive Monte Carlo augmented with normalizing flows. Proc. Natl Acad. Sci. USA 119, e2109420119 (2022).
Google Scholar
Ninarello, A., Berthier, L. & Coslovich, D. Models and algorithms for the next generation of glass transition studies. Phys. Rev. X 7, 021039 (2017).
Berthier, L. & Reichman, D. R. Modern computational studies of the glass transition. Nat. Rev. Phys. 5, 102–116 (2023).
Google Scholar
Noé, F., Olsson, S., Köhler, J. & Wu, H. Boltzmann generators: sampling equilibrium states of many-body systems with deep learning. Science 365, eaaw1147 (2019).
Google Scholar
Wu, D., Wang, L. & Zhang, P. Solving statistical mechanics using variational autoregressive networks. Phys. Rev. Lett. 122, 080602 (2019).
Google Scholar
Köhler, J., Klein, L. & Noé, F. Equivariant flows: exact likelihood generative learning for symmetric densities. In International Conference on Machine Learning 5361–5370 (PMLR, 2020).
Dibak, M., Klein, L., Krämer, A. & Noé, F. Temperature steerable flows and Boltzmann generators. Phys. Rev. Res. 4, L042005 (2022).
Invernizzi, M., Krämer, A., Clementi, C. & Noé, F. Skipping the replica exchange ladder with normalizing flows. J. Phys. Chem. Lett. 13, 11643–11649 (2022).
Xu, M. et al. Geodiff: a geometric diffusion model for molecular conformation generation. Preprint at https://doi.org/10.48550/arXiv.2203.02923 (2022).
Coretti, A., Falkner, S., Geissler, P. & Dellago, C. Learning mappings between equilibrium states of liquid systems using normalizing flows. Preprint at https://doi.org/10.48550/arXiv.2208.10420 (2022).
van Leeuwen, S., de Alba Ortíz, A. P. & Dijkstra, M. A Boltzmann generator for the isobaric-isothermal ensemble. Preprint at https://doi.org/10.48550/arXiv.2305.08483 (2023).
Jung, G., Biroli, G. & Berthier, L. Normalizing flows as an enhanced sampling method for atomistic supercooled liquids. Mach. Learn. Sci. Technol. 5, 035053 (2024).
McNaughton, B., Milošević, M., Perali, A. & Pilati, S. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. Phys. Rev. E 101, 053312 (2020).
Google Scholar
Hibat-Allah, M., Inack, E. M., Wiersema, R., Melko, R. G. & Carrasquilla, J. Variational neural annealing. Nat. Mach. Intell. 3, 952–961 (2021).
Google Scholar
Wu, D., Rossi, R. & Carleo, G. Unbiased Monte Carlo cluster updates with autoregressive neural networks. Phys. Rev. Res. 3, L042024 (2021).
Google Scholar
Inack, E. M., Morawetz, S. & Melko, R. G. Neural annealing and visualization of autoregressive neural networks in the Newman–Moore model. Condens. Matter 7, 38 (2022).
Ciarella, S., Trinquier, J., Weigt, M. & Zamponi, F. Machine-learning-assisted Monte Carlo fails at sampling computationally hard problems. Mach. Learn. Sci. Technol. 4, 010501 (2023).
Google Scholar
Schuetz, M. J., Brubaker, J. K., Zhu, Z. & Katzgraber, H. G. Graph coloring with physics-inspired graph neural networks. Phys. Rev. Res. 4, 043131 (2022).
Schuetz, M. J., Brubaker, J. K. & Katzgraber, H. G. Combinatorial optimization with physics-inspired graph neural networks. Nat. Mach. Intell. 4, 367–377 (2022).
Albergo, M. S., Kanwar, G. & Shanahan, P. E. Flow-based generative models for Markov chain Monte Carlo in lattice field theory. Phys. Rev. D 100, 034515 (2019).
Google Scholar
Kanwar, G. et al. Equivariant flow-based sampling for lattice gauge theory. Phys. Rev. Lett. 125, 121601 (2020).
Google Scholar
de Haan, P., Rainone, C., Cheng, M. C. & Bondesan, R. Scaling up machine learning for quantum field theory with equivariant continuous flows. Preprint at https://doi.org/10.48550/arXiv.2110.02673 (2021).
Gerdes, M., de Haan, P., Rainone, C., Bondesan, R. & Cheng, M. C. Learning lattice quantum field theories with equivariant continuous flows. SciPost Phys. 15, 238 (2023).
Google Scholar
Luo, D., Carleo, G., Clark, B. K. & Stokes, J. Gauge equivariant neural networks for quantum lattice gauge theories. Phys. Rev. Lett. 127, 276402 (2021).
Google Scholar
Marchand, T., Ozawa, M., Biroli, G. & Mallat, S. Wavelet conditional renormalization group. Preprint at https://doi.org/10.48550/arXiv.2207.04941 (2022).
Angelini, M. C. & Ricci-Tersenghi, F. Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set. Nat. Mach. Intell. 5, 29–31 (2023).
Google Scholar
Boettcher, S. Inability of a graph neural network heuristic to outperform greedy algorithms in solving combinatorial optimization problems. Nat. Mach. Intell. 5, 24–25 (2023).
Google Scholar
Boettcher, S. Deep reinforced learning heuristic tested on spin-glass ground states: the larger picture. Nat. Commun. 14, 5658 (2023).
Google Scholar
Ghio, D., Dandi, Y., Krzakala, F. & Zdeborová, L. Sampling with flows, diffusion and autoregressive neural networks: a spin-glass perspective. Proc. Natl Acad. Sci. USA 121, e2311810121 (2024).
Google Scholar