Predictive modeling and machine learning show poor performance of clinical, morphological, and hemodynamic parameters for small intracranial aneurysm rupture

Machine Learning


  • Fusco, M. R. & Ogilvy, C. S. Surgical and endovascular management of cerebral aneurysms. Int. Anesthesiol Clin. 53, 146–165 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wiebers, D. O. et al. Unruptured intracranial aneurysms: Natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Gabriel, R. A. et al. Ten-year detection rate of brain arteriovenous malformations in a large, multiethnic, defined population. Stroke 41, 21–26 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Vlak, M. H., Algra, A., Brandenburg, R. & Rinkel, G. J. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Burkhardt, J. K., Benet, A. & Lawton, M. T. Management of small incidental intracranial aneurysms. Neurosurg. Clin. N. Am. 28, 389–396 (2017).

    Article 
    PubMed 

    Google Scholar 

  • International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms–risk of rupture and risks of surgical intervention. N Engl. J. Med. 339, 1725–1733 (1998).

    Article 

    Google Scholar 

  • Japan Investigators, U. C. A. S. et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl. J. Med. 366, 2474–2482 (2012).

    Article 

    Google Scholar 

  • Sonobe, M., Yamazaki, T., Yonekura, M. & Kikuchi, H. Small unruptured intracranial aneurysm verification study: SUAVe study, Japan. Stroke 41, 1969–1977 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Beck, J., Rohde, S., Berkefeld, J., Seifert, V. & Raabe, A. Size and location of ruptured and unruptured intracranial aneurysms measured by 3-dimensional rotational angiography. Surg. Neurol. 65, 18–25 (2006). discussion 25–27.

    Article 
    PubMed 

    Google Scholar 

  • Weir, B. et al. The aspect ratio (dome/neck) of ruptured and unruptured aneurysms. J. Neurosurg. 99, 447–451 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kassell, N. F. & Torner, J. C. Size of intracranial aneurysms. Neurosurgery 12, 291–297 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, G. J., Eom, K. S., Lee, C., Kim, D. W. & Kang, S. D. Rupture of very small intracranial aneurysms: Incidence and clinical characteristics. J. Cerebrovasc. Endovasc Neurosurg. 17, 217–222 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Juchler, N., Schilling, S., Bijlenga, P., Kurtcuoglu, V. & Hirsch, S. Shape Trumps size: Image-based morphological analysis reveals that the 3D shape discriminates intracranial aneurysm disease status better than aneurysm size. Front. Neurol. 13, 809391 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nahed, B. V. et al. Hypertension, age, and location predict rupture of small intracranial aneurysms. Neurosurgery 57, 676–683 (2005). discussion 676–683.

    Article 
    PubMed 

    Google Scholar 

  • Pettersson, S. D. et al. Predictors for rupture of small (< 7 mm) intracranial aneurysms: A systematic review and meta-analysis. World Neurosurg. 182, 184–192e14 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Duan, Z. et al. Morphological parameters and anatomical locations associated with rupture status of small intracranial aneurysms. Sci. Rep. 8, 6440 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kashiwazaki, D., Kuroda, S., Sapporo, S. A. H. & Study Group. Size ratio can highly predict rupture risk in intracranial small (< 5 mm) aneurysms. Stroke 44, 2169–2173 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Berg, P., Saalfeld, S., Voß, S., Beuing, O. & Janiga, G. A review on the reliability of hemodynamic modeling in intracranial aneurysms: Why computational fluid dynamics alone cannot solve the equation. Neurosurg. Focus. 47, E15 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Berg, P. et al. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J. Neurointerv Surg. 10, 290–296 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Oʼmeara, B., Rahal, J. P., Lauric, A. & Malek, A. M. Benefit of a sharp computed tomography angiography reconstruction kernel for improved characterization of intracranial aneurysms. Neurosurgery 10 Suppl 1, 97–105; discussion 105 (2014).

  • Schneiders, J. J. et al. Intracranial aneurysm neck size overestimation with 3D rotational angiography: The impact on intra-aneurysmal hemodynamics simulated with computational fluid dynamics. AJNR Am. J. Neuroradiol. 34, 121–128 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Berg, P. et al. Multiple aneurysms anatomy challenge 2018 (MATCH): Phase I: Segmentation. Cardiovasc. Eng. Technol. 9, 565–581 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Valen-Sendstad, K. et al. Real-World variability in the prediction of intracranial aneurysm wall shear stress: The 2015 international aneurysm CFD challenge. Cardiovasc. Eng. Technol. 9, 544–564 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Metaxa, E. et al. Characterization of critical hemodynamics contributing to aneurysmal remodeling at the basilar terminus in a rabbit model. Stroke 41, 1774–1782 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, J. et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42, 144–152 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Cebral, J. R., Mut, F., Weir, J. & Putman, C. Quantitative characterization of the hemodynamic environment in ruptured and unruptured brain aneurysms. AJNR Am. J. Neuroradiol. 32, 145–151 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cebral, J. R. & Meng, H. Counterpoint: Realizing the clinical utility of computational fluid dynamics–closing the gap. AJNR Am. J. Neuroradiol. 33, 396–398 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Robertson, A. M. & Watton, P. N. Computational fluid dynamics in aneurysm research: Critical reflections, future directions. AJNR Am. J. Neuroradiol. 33, 992–995 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nordahl, E. R. et al. Morphological and hemodynamic changes during cerebral aneurysm growth. Brain Sci. 11, 520 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leemans, E. L. et al. Comparing morphology and hemodynamics of stable-versus-growing and grown intracranial aneurysms. AJNR Am. J. Neuroradiol. 40, 2102–2110 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karnam, Y., Mut, F., Robertson, A. M., Kaneko, N. & Cebral, J. R. Competing pathways of intracranial aneurysm growth: Linking regional growth distribution and hemodynamics. J. Neurosurg. 1–10. https://doi.org/10.3171/2024.9.JNS241208 (2025).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meng, H., Tutino, V. M., Xiang, J. & Siddiqui, A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. AJNR Am. J. Neuroradiol. 35, 1254–1262 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saalfeld, S., Berg, P., Neugebauer, M. & Preim, B. Reconstruction of 3D Surface Meshes for Blood Flow Simulations of Intracranial Aneurysms (Bremen, 2015).

  • Antiga, L. et al. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46, 1097–1112 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Saalfeld, S. et al. Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters. Int. J. CARS. 13, 1781–1793 (2018).

    Article 

    Google Scholar 

  • Robertson, A. M., Sequeira, A. & Owens, R. G. in Rheological Models for Blood. 211–241 (eds Cardiovascular Mathematics, L., Quarteroni, A. & Veneziani, A.) (Springer Milan, 2009). https://doi.org/10.1007/978-88-470-1152-6_6

  • Li, B. et al. Reliability of using generic flow conditions to quantify aneurysmal haemodynamics: A comparison against simulations incorporating boundary conditions measured in vivo. Comput. Methods Programs Biomed. 225, 107034 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Voß, S., Niemann, U., Saalfeld, S., Janiga, G. & Berg, P. Impact of workflow variability on image-based intracranial aneurysm hemodynamics. Comput. Biol. Med. 190, 110018 (2025).

    Article 
    PubMed 

    Google Scholar 

  • Cebral, J. R. et al. Aneurysm rupture following treatment with flow-diverting stents: Computational hemodynamics analysis of treatment. AJNR Am. J. Neuroradiol. 32, 27–33 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chnafa, C. et al. Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation. Physiol. Meas. 38, 2044–2057 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Korte, J. et al. Is accurate lumen segmentation more important than outlet boundary condition in Image-Based blood flow simulations for intracranial aneurysms? Cardiovasc. Eng. Tech. 14, 617–630 (2023).

    Article 

    Google Scholar 

  • Xiang, J., Tutino, V. M., Snyder, K. V. & Meng, H. CFD: Computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am. J. Neuroradiol. 35, 1849–1857 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeo, I. K. A new family of power transformations to improve normality or symmetry. Biometrika 87, 954–959 (2000).

    Article 
    MathSciNet 

    Google Scholar 

  • McFadden, D. Quantitative methods for analyzing travel behaviour of individuals: Some recent developments. (1977). https://EconPapers.repec.org/RePEc:cwl:cwldpp:474

  • Xiang, J. et al. Rupture resemblance score (RRS): Toward risk stratification of unruptured intracranial aneurysms using hemodynamic-morphological discriminants. J. Neurointerv Surg. 7, 490–495 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Detmer, F. J. et al. Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics. Int. J. CARS. 13, 1767–1779 (2018).

    Article 

    Google Scholar 

  • Ali, M. et al. Haemorrhagic stroke and brain vascular malformations in women: Risk factors and clinical features. Lancet Neurol. 23, 625–635 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Claassen, J. & Park, S. Spontaneous subarachnoid haemorrhage. Lancet 400, 846–862 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Etminan, N. et al. Worldwide incidence of aneurysmal subarachnoid hemorrhage according to region, time period, blood pressure, and smoking prevalence in the population: A systematic review and meta-analysis. JAMA Neurol. 76, 588–597 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. et al. Anterior communicating artery aneurysms: Anatomical considerations and microsurgical strategies. Front. Neurol. 11, 1020 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rinaldo, L., Nesvick, C. L., Rabinstein, A. A. & Lanzino, G. Differences in size between unruptured and ruptured saccular intracranial aneurysms by location. World Neurosurg. 133, e828–e834 (2020).

    Article 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *