Neural activity during inhibitory control predicts suicidal ideation with machine learning

Machine Learning


  • Prevention C for DC and. Centers for Disease Control and Prevention. 2023;2023. https://www.cdc.gov/suicide/suicide-data-statistics.html.

  • O’Rourke MC, Jamil RT, Siddiqui W. Suicide Screening and Prevention. 2023 Mar 6. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.

  • Vilhjalmsson R, Kristjansdottir G, Sveinbjarnardottir E. Factors associated with suicide ideation in adults. Soc Psychiatry Psychiatr Epidemiol. 1998;33:97–103.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yan Y, Hou J, Li Q, Yu NX. Suicide before and during the COVID-19 Pandemic: A systematic review with meta-analysis. Int J Environ Res Public Health. 2023;20:3346.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aldhyani THH, Alsubari SN, Alshebami AS, Alkahtani H, Ahmed ZAT. Detecting and analyzing suicidal ideation on social media using deep learning and machine learning models. Int J Environ Res Public Health. 2022;19:12635.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu J, Shi M, Jiang H. Detecting suicidal ideation in social media: An ensemble method based on feature fusion. Int J Environ Res Public Health. 2022;19:8197.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy A, Nikolitch K, McGinn R, Jinah S, Klement W, Kaminsky ZA. A machine learning approach predicts future risk to suicidal ideation from social media data. NPJ Digit Med. 2020;3:78.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Navarro MC, Ouellet-Morin I, Geoffroy MC, Boivin M, Tremblay RE, Cote SM, et al. Machine learning assessment of early life factors predicting suicide attempt in adolescence or young adulthood. JAMA Netw Open. 2021;4:e211450.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su R, John JR, Lin PI. Machine learning-based prediction for self-harm and suicide attempts in adolescents. Psychiatry Res. 2023;328:115446.

    Article 
    PubMed 

    Google Scholar 

  • Sudol K, Mann JJ. Biomarkers of suicide attempt behavior: towards a biological model of risk. Curr Psychiatry Rep. 2017;19:31.

    Article 
    PubMed 

    Google Scholar 

  • Chang BP, Franklin JC, Ribeiro JD, Fox KR, Bentley KH, Kleiman EM, et al. Biological risk factors for suicidal behaviors: a meta-analysis. Transl Psychiatry. 2016;6:e887.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bajaj S, Blair KS, Dobbertin M, Patil KR, Tyler PM, Ringle JL, et al. Machine learning based identification of structural brain alterations underlying suicide risk in adolescents. Discov Ment Health. 2023;3:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hasey G, Reilly J, Colic S, Maccrimmon D, Rostamabad AK, Debruin H. Detection of suicidal ideation in depressed subjects using resting electroencephalography features identified by machine learning algorithms. Biol Psychiatry. 2020;87:S380–1.

  • Schmaal L, van Harmelen A-L, Chatzi V, Lippard ETC, Toenders YJ, Averill LA, et al. Imaging suicidal thoughts and behaviors: a comprehensive review of 2 decades of neuroimaging studies. Mol Psychiatry. 2020;25:408–27.

    Article 
    PubMed 

    Google Scholar 

  • Bohaterewicz B, Sobczak AM, Podolak I, Wojcik B, Metel D, Chrobak AA, et al. Machine learning-based identification of suicidal risk in patients with schizophrenia using multi-level resting-state fMRI features. Front Neurosci. 2020;14:605697.

    Article 
    PubMed 

    Google Scholar 

  • Wang Q, He C, Wang Z, Fan D, Zhang Z, Xie C, et al. Connectomics-based resting-state functional network alterations predict suicidality in major depressive disorder. Transl Psychiatry. 2023;13:365.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keilp JG, Grunebaum MF, Gorlyn M, LeBlanc S, Burke AK, Galfalvy H, et al. Suicidal ideation and the subjective aspects of depression. J Affect Disord. 2012;140:75–81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purselle DC, Heninger M, Hanzlick R, Garlow SJ. Differential association of socioeconomic status in ethnic and age-defined suicides. Psychiatry Res. 2009;167:258–65.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu W, Zhang Y, Jiang J, Lucas MV, Fonzo GA, Rolle CE, et al. An electroencephalographic signature predicts antidepressant response in major depression. Nat Biotechnol. 2020;38:439–47.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. J Affect Disord. 2018;241:519–32.

    Article 
    PubMed 

    Google Scholar 

  • Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late‐life depression classification and response prediction. Int J Geriatr Psychiatry. 2015;30:1056–67.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70:821.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunlop BW, Mayberg HS. Neuroimaging-based biomarkers for treatment selection in major depressive disorder. Dialogues Clin Neurosci. 2014;16:479–90.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Athreya AP, Neavin D, Carrillo‐Roa T, Skime M, Biernacka J, Frye MA, et al. Pharmacogenomics‐driven prediction of antidepressant treatment outcomes: a machine‐learning approach with multi‐trial replication. Clin Pharm Ther. 2019;106:855–65.

    Article 
    CAS 

    Google Scholar 

  • Bankwitz A, Rüesch A, Adank A, Hörmann C, Villar de Araujo T, Schoretsanitis G, et al. EEG source functional connectivity in patients after a recent suicide attempt. Clin Neurophysiol. 2023;154:60–9.

    Article 
    PubMed 

    Google Scholar 

  • Lee SM, Jang K-I, Chae J-H. Electroencephalographic correlates of suicidal ideation in the Theta band. Clin EEG Neurosci. 2017;48:316–21.

    Article 
    PubMed 

    Google Scholar 

  • Arikan MK, Gunver MG, Tarhan N, Metin B. High-Gamma: A biological marker for suicide attempt in patients with depression. J Affect Disord. 2019;254:1–6.

    Article 
    PubMed 

    Google Scholar 

  • Butler LB, Nooner KB. The link between suicidality and Electroencephalography asymmetry: a systematic review and meta-analysis. Clin Psychopharmacol Neurosci. 2023;21:419–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He X-Q, Hu J-H, Peng X-Y, Zhao L, Zhou D-D, Ma L-L, et al. EEG microstate analysis reveals large-scale brain network alterations in depressed adolescents with suicidal ideation. J Affect Disord. 2024;346:57–63.

    Article 
    PubMed 

    Google Scholar 

  • Pu S, Setoyama S, Noda T. Association between cognitive deficits and suicidal ideation in patients with major depressive disorder. Sci Rep. 2017;7:11637.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen KJ, Hooley JM. Inhibitory control in people who self-injure: evidence for impairment and enhancement. Psychiatry Res. 2015;225:631–7.

    Article 
    PubMed 

    Google Scholar 

  • Porteous M, Tavakoli P, Campbell K, Dale A, Boafo A, Robillard R. Emotional modulation of response inhibition in adolescents during acute suicidal crisis: event-related potentials in an emotional Go/NoGo task. Clin EEG Neurosci. 2023;54:451–60.

    Article 
    PubMed 

    Google Scholar 

  • Richard-Devantoy S, Berlim MT, Jollant F. A meta-analysis of neuropsychological markers of vulnerability to suicidal behavior in mood disorders. Psychol Med. 2014;44:1663–73.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grennan GK, Ramanathan DS, Mishra J, Withers MC. Differences in interference processing and frontal brain function with climate trauma from California’s deadliest wildfire. PLOS Climate. 2023;2:e0000125.

  • Mo Z, Grennan G, Kulkarni A, Ramanathan D, Balasubramani PP, Mishra J. Parietal alpha underlies slower cognitive responses during interference processing in adolescents. Behav Brain Res. 2023;443:114356.

    Article 
    PubMed 

    Google Scholar 

  • Bridgett DJ, Oddi KB, Laake LM, Murdock KW, Bachmann MN. Integrating and differentiating aspects of self-regulation: effortful control, executive functioning, and links to negative affectivity. Emotion. 2013;13:47–63.

    Article 
    PubMed 

    Google Scholar 

  • Kasper LJ, Alderson RM, Hudec KL. Moderators of working memory deficits in children with attention-deficit/hyperactivity disorder (ADHD): a meta-analytic review. Clin Psychol Rev. 2012;32:605–17.

    Article 
    PubMed 

    Google Scholar 

  • Lin L, Wang C, Mo J, Liu Y, Liu T, Jiang Y, et al. Differences in behavioral inhibitory control in response to angry and happy emotions among college students with and without suicidal ideation: An ERP study. Front Psychol. 2020;11:2191.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Richard-Devantoy S, Olie E, Guillaume S, Bechara A, Courtet P, Jollant F. Distinct alterations in value-based decision-making and cognitive control in suicide attempters: toward a dual neurocognitive model. J Affect Disord. 2013;151:1120–4.

    Article 
    PubMed 

    Google Scholar 

  • Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16:606–13.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spitzer RL, Kroenke K, Williams JBW, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166:1092–7.

    Article 
    PubMed 

    Google Scholar 

  • Boudreau B, Poulin C. An examination of the validity of the Family Affluence Scale II (FAS II) in a general adolescent population of Canada. Soc Indic Res. 2009;94:29–42.

    Article 

    Google Scholar 

  • Oquendo MA, Halberstam B, Mann JJ, First MB Standardized evaluation in clinical practice. American Psychiatric Press, Washington DC. 2003:103–29.

  • Misra A, Ojeda A, Mishra J. BrainE: a digital platform for evaluating, engaging and enhancing brain function. Regents of the University of California Copyright SD2018-816. 2018.

  • Balasubramani PP, Ojeda A, Grennan G, Maric V, Le H, Alim F, et al. Mapping cognitive brain functions at scale. Neuroimage. 2021;231:117641.

    Article 
    PubMed 

    Google Scholar 

  • Balasubramani PP, Walke A, Grennan G, Perley A, Purpura S, Ramanathan D, et al. Simultaneous gut-brain electrophysiology shows cognition and satiety specific coupling. Sensors. 2022;22:9242.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kato R, Balasubramani PP, Ramanathan D, Mishra J. Utility of cognitive neural features for predicting mental health behaviors. Sensors. 2022;22:3116.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nan J, Balasubramani PP, Ramanathan D, Mishra J. Neural dynamics during emotional video engagement relate to anxiety. Front Hum Neurosci. 2022;16:993606.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Balasubramani PP, Diaz-Delgado J, Grennan G, Alim F, Zafar-Khan M, Maric V, et al. Distinct neural activations correlate with maximization of reward magnitude versus frequency. Cereb Cortex. 2023;33:6038–50.

    Article 
    PubMed 

    Google Scholar 

  • Grennan G, Balasubramani PP, Alim F, Zafar-Khan M, Lee EE, Jeste DV, et al. Cognitive and neural correlates of loneliness and wisdom during emotional bias. Cereb Cortex. 2021;31:3311–22.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grennan G, Balasubramani PP, Vahidi N, Ramanathan D, Jeste DV, Mishra J. Dissociable neural mechanisms of cognition and well-being in youth versus healthy aging. Psychol Aging. 2022;37:827–42.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shah RV, Grennan G, Zafar-Khan M, Alim F, Dey S, Ramanathan D, et al. Personalized machine learning of depressed mood using wearables. Transl Psychiatry. 2021;11:338.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fakhraei L, Francoeur M, Balasubramani PP, Tang T, Hulyalkar S, Buscher N, et al. Electrophysiological correlates of rodent default-mode network suppression revealed by large-scale local field potential recordings. Cereb Cortex Commun. 2021;2:tgab034.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fakhraei L, Francoeur M, Balasubramani P, Tang T, Hulyalkar S, Buscher N, et al. Mapping large-scale networks associated with action, behavioral inhibition and impulsivity. ENeuro. 2021;8:ENEURO.0406-20.2021.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kothe C, Medine D, Boulay C, Grivich M, Stenner T Lab Streaming Layer. https://labstreaminglayer.readthedocs.io/. 2019.

  • Ojeda A, Kreutz-Delgado K, Mishra J. Bridging M/EEG source imaging and independent component analysis frameworks using biologically inspired sparsity priors. Neural Comput. 2021;33:2408–38.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ojeda A, Wagner M, Maric V, Ramanathan D, Mishra J. EEG source derived salience network coupling supports real-world attention switching. Neuropsychologia. 2023;178:108445.

    Article 
    PubMed 

    Google Scholar 

  • Rodríguez-González V, Gómez C, Shigihara Y, Hoshi H, Revilla-Vallejo M, Hornero R, et al. Consistency of local activation parameters at sensor- and source-level in neural signals. J Neural Eng. 2020;17:056020.

    Article 
    PubMed 

    Google Scholar 

  • Michel CM, He B. EEG source localization. Handb Clin Neurol. 2019;160:85–101.

    Article 
    PubMed 

    Google Scholar 

  • Ojeda A, Kreutz-Delgado K, Mullen T. Fast and robust Block-Sparse Bayesian learning for EEG source imaging. Neuroimage. 2018;174:449–62.

    Article 
    PubMed 

    Google Scholar 

  • Verstynen T, Kording KP. Overfitting to ‘predict’ suicidal ideation. Nat Hum Behav. 2023;7:680–1.

    Article 
    PubMed 

    Google Scholar 

  • Buuren Svan, Groothuis-Oudshoorn K. mice: Multivariate Imputation by chained equations in R. J Stat Softw. 2011;45:1–67.

    Article 

    Google Scholar 

  • Cawley GC, Talbot NLC. On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res. 2010;11:2079–107.

    Google Scholar 

  • Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21:6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rashed-Al-Mahfuz MD, Moni MA, Uddin S, Alyami SA, Summers MA, Eapen V. A deep convolutional neural network method to detect seizures and characteristic frequencies using Epileptic Electroencephalogram (EEG) data. IEEE J Transl Eng Health Med. 2021;9:1–12.

    Google Scholar 

  • Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Guyon I, Luxburg U Von, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al., editors. Adv Neural Inf Process Syst, vol. 30, Curran Associates, Inc.; 2017.

  • Jaiswal S, Nan J, Purpura SR, Manchanda JK, Garcia-pak I, Ramanathan DS, et al. Mindfulness coaching with digital lifestyle monitoring enhances selective attention in medical scientists. MedRxiv. 2024:2024.01.04.24300716.

  • Anijarv TE, Can AT, Gallay CC, Forsyth GA, Dutton M, Mitchell JS, et al. Spectral changes of EEG following a 6-week low-dose oral ketamine treatment in adults with major depressive disorder and chronic suicidality. Int J Neuropsychopharmacol. 2023;26:259–67.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bentley KH, Franklin JC, Ribeiro JD, Kleiman EM, Fox KR, Nock MK. Anxiety and its disorders as risk factors for suicidal thoughts and behaviors: A meta-analytic review. Clin Psychol Rev. 2016;43:30–46.

    Article 
    PubMed 

    Google Scholar 

  • Briley PM, Liddle EB, Simmonite M, Jansen M, White TP, Balain V, et al. Regional brain correlates of beta bursts in health and psychosis: a concurrent electroencephalography and functional magnetic resonance imaging study. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:1145–56.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao L, Hu YM. Beta rebound in visuomotor adaptation: still the status quo? J Neurosci. 2016;36:6365–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spitzer B, Haegens S. Beyond the status quo: a role for beta oscillations in endogenous content (Re)Activation. ENeuro. 2017;4:ENEURO.0170-17.2017.

  • Muralidharan V, Aron AR, Schmidt R. Transient beta modulates decision thresholds during human action-stopping. Neuroimage. 2022;254:119145.

    Article 
    PubMed 

    Google Scholar 

  • Sundby KK, Jana S, Aron AR. Double-blind disruption of right inferior frontal cortex with TMS reduces right frontal beta power for action stopping. J Neurophysiol. 2021;125:140–53.

    Article 
    PubMed 

    Google Scholar 

  • Rossiter HE, Davis EM, Clark EV, Boudrias M-H, Ward NS. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. Neuroimage. 2014;91:360–5.

    Article 
    PubMed 

    Google Scholar 

  • Marzuk PM, Hartwell N, Leon AC, Portera L. Executive functioning in depressed patients with suicidal ideation. Acta Psychiatr Scand. 2005;112:294–301.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ram D, Chandran S, Sadar A, Gowdappa B. Correlation of cognitive resilience, cognitive flexibility and impulsivity in attempted suicide. Indian J Psychol Med. 2019;41:362–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson C, Ong ELC. The association between suicidal behavior, attentional control, and frontal asymmetry. Front Psychiatry. 2018;9:79.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • HajiHosseini A, Hutcherson CA, Holroyd CB. Beta oscillations following performance feedback predict subsequent recall of task-relevant information. Sci Rep. 2020;10:15114.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yaple Z, Martinez-Saito M, Novikov N, Altukhov D, Shestakova A, Klucharev V. Power of feedback-induced beta oscillations reflect omission of rewards: evidence From an EEG gambling study. Front Neurosci. 2018;12:776.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bu-Omer HM, Gofuku A, Sato K, Miyakoshi M. Parieto-Occipital Alpha and low-Beta EEG power reflect sense of agency. Brain Sci. 2021;11:743.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moore JW, Ruge D, Wenke D, Rothwell J, Haggard P. Disrupting the experience of control in the human brain: pre-supplementary motor area contributes to the sense of agency. Proc Biol Sci. 2010;277:2503–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gao M, Wong NML, Lin C, Huang C-M, Liu H-L, Toh C-H, et al. Multimodal brain connectome-based prediction of suicide risk in people with late-life depression. Nat Ment Health. 2023;1:100–13.

    Article 

    Google Scholar 

  • Weng J-C, Lin T-Y, Tsai Y-H, Cheok M, Chang Y-P, Chen V. An autoencoder and machine learning model to predict suicidal ideation with brain structural imaging. J Clin Med. 2020;9:658.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chekroud AM, Hawrilenko M, Loho H, Bondar J, Gueorguieva R, Hasan A, et al. Illusory generalizability of clinical prediction models. Science. 2024;383:164–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kirkpatrick B, Buchanan RW, Ross DE, Carpenter WT. A separate disease within the Syndrome of Schizophrenia. Arch Gen Psychiatry. 2001;58:165.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morrison LL, Downey DL. Racial differences in self-disclosure of suicidal ideation and reasons for living: Implications for training. Cult Divers Ethn Minor Psychol. 2000;6:374–86.

    Article 
    CAS 

    Google Scholar 

  • O’Keefe VM, Wingate LR, Cole AB, Hollingsworth DW, Tucker RP. Seemingly harmless racial communications are not so harmless: racial microaggressions lead to suicidal ideation by way of depression symptoms. Suicide Life Threat Behav. 2015;45:567–76.

    Article 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *