Fleming, N. How artificial intelligence is changing drug discovery. Nature 557, S55–S57 (2018).
Google Scholar
Lyu, J. et al. Ultra-large library docking for discovering new chemotypes. Nature 566, 224–229 (2019).
Google Scholar
Kitchen, D. B., Decornez, H., Furr, J. R. & Bajorath, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3, 935–949 (2004).
Google Scholar
Pinzi, L. & Rastelli, G. Molecular docking: shifting paradigms in drug discovery. Int. J. Mol. Sci. 20, 4331 (2019).
Google Scholar
Pagadala, N. S., Syed, K. & Tuszynski, J. Software for molecular docking: a review. Biophys. Rev. 9, 91–102 (2017).
Google Scholar
Wang, L. et al. Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. J. Am. Chem. Soc. 137, 2695–2703 (2015).
Google Scholar
Sliwoski, G., Kothiwale, S., Meiler, J. & Lowe, E. W. Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2014).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Google Scholar
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Google Scholar
Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).
Google Scholar
Song, Y. & Wang, L. Multiobjective tree-based reinforcement learning for estimating tolerant dynamic treatment regimes. Biometrics 80, ujad017 (2024).
Google Scholar
Luo, J., Wei, W., Waldispühl, J. & Moitessier, N. Challenges and current status of computational methods for docking small molecules to nucleic acids. Eur. J. Med. Chem. 168, 414–425 (2019).
Google Scholar
Lo, Yu-Chen, Rensi, S. E., Torng, W. & Altman, R. B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 23, 1538–1546 (2018).
Google Scholar
The Atomwise AIMS Program. AI is a viable alternative to high throughput screening: a 318-target study. Sci. Rep. 14, 7526 (2024).
Gómez-Sacristán, P., Simeon, S., Tran-Nguyen, V.-K., Patil, S. & Ballester, P. J. Inactive-enriched machine-learning models exploiting patent data improve structure-based virtual screening for PDL1 dimerizers. J. Adv. Res. (in the press); https://doi.org/10.1016/j.jare.2024.01.024
Hu, X. et al. Discovery of novel non-steroidal selective glucocorticoid receptor modulators by structure-and IGN-based virtual screening, structural optimization, and biological evaluation. Eur. J. Med. Chem. 237, 114382 (2022).
Google Scholar
Vaswani, A. et al. Attention is all you need. In NIPS’17: Proc. 31st International Conference on Neural Information Processing Systems (eds von Luxburg, U. et al.) 6000–6010 (Curran Associates, 2017).
Devlin, J., Chang, M. W., Lee, K. & Toutanova, K. B. BERT: pre-training of deep bidirectional transformers for language understanding. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 1, 4171–4186 (Association for Computational Linguistics, 2019).
Ouyang, L. et al. Training language models to follow instructions with human feedback. Adv. Neural Inf. Process. Syst. 35, 27730–27744 (2022).
Singh, R., Sledzieski, S., Bryson, B., Cowen, L. & Berger, B. Contrastive learning in protein language space predicts interactions between drugs and protein targets. Proc. Natl Acad. Sci. USA 120, e2220778120 (2023).
Google Scholar
Saar, K. L. et al. Turning high-throughput structural biology into predictive inhibitor design. Proc. Natl Acad. Sci. USA 120, e2214168120 (2023).
Google Scholar
Cang, Z., Mu, L. & Wei, G.-W. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening. PLoS Comput. Biol. 14, e1005929 (2018).
Google Scholar
Nguyen, D. D., Cang, Z. & Wei, G.-W. A review of mathematical representations of biomolecular data. Phys. Chem. Chem. Phys. 22, 4343–4367 (2020).
Google Scholar
Wang, R., Nguyen, D. D. & Wei, G.-W. Persistent spectral graph. Int. J. Numer. Methods Biomed. Eng. 36, e3376 (2020).
Google Scholar
Meng, Z. & Xia, K. Persistent spectral–based machine learning (PerSpect ML) for protein-ligand binding affinity prediction. Sci. Adv. 7, eabc5329 (2021).
Google Scholar
Chen, D., Liu, J., Wu, J. & Wei, G.-W. Persistent hyperdigraph homology and persistent hyperdigraph Laplacians. Found. Data Sci. 5, 558–588 (2023).
Google Scholar
Zomorodian, A. & Carlsson, G. Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005).
Google Scholar
Chen, D., Zheng, J., Wei, G.-W. & Pan, F. Extracting predictive representations from hundreds of millions of molecules. J. Phys. Chem. Lett. 12, 10793–10801 (2021).
Google Scholar
Ruff, K. M. & Pappu, R. V. AlphaFold and implications for intrinsically disordered proteins. J. Mol. Biol. 433, 167208 (2021).
Google Scholar
Li, Y., Han, L., Liu, Z. & Wang, R. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results. J. Chem. Inf. Model. 54, 1717–1736 (2014).
Google Scholar
Cheng, T., Li, X., Li, Y., Liu, Z. & Wang, R. Comparative assessment of scoring functions on a diverse test set. J. Chem. Inf. Model. 49, 1079–1093 (2009).
Google Scholar
Su, M. et al. Comparative assessment of scoring functions: the CASF-2016 update. J. Chem. Inf. Model. 59, 895–913 (2018).
Google Scholar
Trull, T. J. & Ebner-Priemer, U. W. Using experience sampling methods/ecological momentary assessment (ESM/EMA) in clinical assessment and clinical research: introduction to the special section. Psychol. Assess. 21, 457–462 (2009).
Karlov, D. S., Sosnin, S., Fedorov, M. V. & Popov, P. graphDelta: MPNN scoring function for the affinity prediction of protein–ligand complexes. ACS Omega 5, 5150–5159 (2020).
Google Scholar
Sánchez-Cruz, N., Medina-Franco, J., Mestres, J. & Barril, X. Extended connectivity interaction features: improving binding affinity prediction through chemical description. Bioinformatics 37, 1376–1382 (2021).
Google Scholar
Wang, Z. et al. Onionnet-2: a convolutional neural network model for predicting protein-ligand binding affinity based on residue-atom contacting shells. Front. Chem. 9, 753002 (2021).
Google Scholar
Rezaei, M. A., Li, Y., Wu, D., Li, X. & Li, C. Deep learning in drug design: protein-ligand binding affinity prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 19, 407–417 (2020).
Google Scholar
Wang, S. et al. Se-onionnet: a convolution neural network for protein–ligand binding affinity prediction. Front. Genet. 11, 607824 (2021).
Google Scholar
Jones, D. et al. Improved protein–ligand binding affinity prediction with structure-based deep fusion inference. J. Chem. Inf. Model. 61, 1583–1592 (2021).
Google Scholar
Boyles, F., Deane, C. M. & Morris, G. M. Learning from the ligand: using ligand-based features to improve binding affinity prediction. Bioinformatics 36, 758–764 (2020).
Google Scholar
Liu, Z. et al. PDB-wide collection of binding data: current status of the PDBbind database. Bioinformatics 31, 405–412 (2015).
Google Scholar
Wang, C. & Zhang, Y. Improving scoring-docking-screening powers of protein–ligand scoring functions using random forest. J. Comput. Chem. 38, 169–177 (2017).
Google Scholar
Gentile, F. et al. Automated discovery of noncovalent inhibitors of SARS-Cov-2 main protease by consensus deep docking of 40 billion small molecules. Chem. Sci. 12, 15960–15974 (2021).
Google Scholar
Méndez-Lucio, O., Ahmad, M., del Rio-Chanona, E. A. & Wegner, J. K. A geometric deep learning approach to predict binding conformations of bioactive molecules. Nat. Mach. Intell. 3, 1033–1039 (2021).
Google Scholar
Zheng, L. et al. Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term. Brief. Bioinform. 23, bbac051 (2022).
Google Scholar
Bao, J., He, X. & Zhang, J. Z. H. DeepBSP—a machine learning method for accurate prediction of protein–ligand docking structures. J. Chem. Inf. Model. 61, 2231–2240 (2021).
Google Scholar
Shen, C. et al. Boosting protein–ligand binding pose prediction and virtual screening based on residue–atom distance likelihood potential and graph transformer. J. Med. Chem. 65, 10691–10706 (2022).
Google Scholar
Nguyen, D. D. & Wei, G.-W. AGL-Score: algebraic graph learning score for protein–ligand binding scoring, ranking, docking, and screening. J. Chem. Inf. Model. 59, 3291–3304 (2019).
Google Scholar
Liu, X., Feng, H., Wu, J. & Xia, K. Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction. PLoS Comput. Biol. 18, e1009943 (2022).
Google Scholar
Tran-Nguyen, V.-K., Junaid, M., Simeon, S. & Ballester, P. J. A practical guide to machine-learning scoring for structure-based virtual screening. Nat. Protoc. 18, 3460–3511 (2023).
Google Scholar
Moon, S., Zhung, W., Yang, S., Lim, J. & Kim, W. Y. PIGNet: a physics-informed deep learning model toward generalized drug–target interaction predictions. Chem. Sci. 13, 3661–3673 (2022).
Google Scholar
Tran-Nguyen, V.-K., Bret, G. & Rognan, D. True accuracy of fast scoring functions to predict high-throughput screening data from docking poses: the simpler the better. J. Chem. Inf. Model. 61, 2788–2797 (2021).
Google Scholar
Tran-Nguyen, V.-K. & Ballester, P. J. Beware of simple methods for structure-based virtual screening: the critical importance of broader comparisons. J. Chem. Inf. Model. 63, 1401–1405 (2023).
Google Scholar
Tran-Nguyen, V.-K., Simeon, S., Junaid, M. & Ballester, P. J. Structure-based virtual screening for PDL1 dimerizers: evaluating generic scoring functions. Curr. Res. Struct. Biol. 4, 206–210 (2022).
Google Scholar
Shen, C. et al. A generalized protein–ligand scoring framework with balanced scoring, docking, ranking and screening powers. Chem. Sci. 14, 8129–8146 (2023).
Google Scholar
Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).
Google Scholar
Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).
Google Scholar
Tran-Nguyen, V.-K., Jacquemard, C. & Rognan, D. LIT-PCBA: an unbiased data set for machine learning and virtual screening. J. Chem. Inf. Model. 60, 4263–4273 (2020).
Google Scholar
Horak, D. & Jost, J. Spectra of combinatorial Laplace operators on simplicial complexes. Adv. Math. 244, 303–336 (2013).
Google Scholar
Eckmann, B. Harmonische funktionen und randwertaufgaben in einem komplex. Comment. Math. Helv. 17, 240–255 (1944).
Google Scholar
Chen, J., Zhao, R., Tong, Y. & Wei, G.-W. Evolutionary de Rham-Hodge method. Discrete Continuous Dyn. Syst. Ser. B. 26, 3785–3821 (2021).
Google Scholar
Mémoli, F., Wan, Z. & Wang, Y. Persistent Laplacians: properties, algorithms and implications. SIAM J. Math. Data Sci. 4, 858–884 (2022).
Google Scholar
Edelsbrunner, H., Letscher, D. & Zomorodian, A. Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002).
Google Scholar
Liu, J., Li, J. & Wu, J. The algebraic stability for persistent Laplacians. Preprint at arXiv https://doi.org/10.48550/arXiv.2302.03902 (2023).
He, K. et al. Masked autoencoders are scalable vision learners. In Proc. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 15979–15988 (IEEE, 2022).
Chen, D. WeilabMSU/TopoFormer: TopoFormer. Zenodo https://doi.org/10.5281/zenodo.10892799 (2024).
Sunseri, J. & Koes, D. R. Virtual screening with Gnina 1.0. Molecules 26, 7369 (2021).
Google Scholar
Yang, C. & Zhang, Y. Delta machine learning to improve scoring-ranking-screening performances of protein–ligand scoring functions. J. Chem. Inf. Model. 62, 2696–2712 (2022).
Google Scholar
Wójcikowski, M., Kukiełka, M., Stepniewska-Dziubinska, M. M. & Siedlecki, P. Development of a protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions. Bioinformatics 35, 1334–1341 (2019).
Google Scholar
Stepniewska-Dziubinska, M. M., Zielenkiewicz, P. & Siedlecki, P. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction. Bioinformatics 34, 3666–3674 (2018).
Google Scholar