Modeling residue formation from crude oil oxidation using tree-based machine learning approaches

Machine Learning


  • Harding, T. Methods to enhance success of field application of in-situ combustion for heavy oil recovery. SPE Reservoir Eval. Eng. 26, 190–197 (2023).

    Google Scholar 

  • Minakov, A. V., Meshkova, V. D., Guzey, D. V. & Pryazhnikov, M. I. Recent advances in the study of in situ combustion for enhanced oil recovery. Energies 16, 4266 (2023).

    Google Scholar 

  • Dong, X. et al. Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection. Appl. Energy 239, 1190–1211 (2019).

    ADS 

    Google Scholar 

  • Dong, X., Liu, H., Wu, K. & Chen, Z. in SPE Improved Oil Recovery Conference? D041S018R004 (SPE).

  • Yang, M., Harding, T. G. & Chen, Z. Numerical investigation of the mechanisms in co-injection of steam and enriched air process using combustion tube tests. Fuel 242, 638–648 (2019).

    Google Scholar 

  • Medina, O. E., Olmos, C., Lopera, S. H., Cortés, F. B. & Franco, C. A. Nanotechnology applied to thermal enhanced oil recovery processes: A review. Energies 12, 4671 (2019).

    Google Scholar 

  • Ado, M. R., Greaves, M. & Rigby, S. P. Numerical simulation investigations of the applicability of THAI in situ combustion process in heavy oil reservoirs underlain by bottom water. Petrol. Res. 8, 36–43 (2023).

    Google Scholar 

  • Turta, A., Chattopadhyay, S., Bhattacharya, R., Condrachi, A. & Hanson, W. Current status of commercial in situ combustion projects worldwide. J. Can. Pet. Technol. https://doi.org/10.2118/07-11-GE (2007).

    Google Scholar 

  • Ursenbach, M., Moore, R. & Mehta, S. Air injection in heavy oil reservoirs-a process whose time has come (again). J. Can. Petrol. Technol. 49, 48–54 (2010).

    Google Scholar 

  • Turta, A., Singhal, A. K., Islam, M. N. & Greaves, M. in SPE Canadian Energy Technology Conference. D011S010R002 (SPE).

  • Martins, M. F. Structure d’un front de combustion propagé en co-courant dans un lit fixe de schiste bitumineux broyé, Institut National Polytechnique (Toulouse), (2008).

  • Ismail, N. B. & Hascakir, B. Impact of asphaltenes and clay interaction on in-situ combustion performance. Fuel 268, 117358 (2020).

    Google Scholar 

  • Xu, Q. et al. Chemical-structural properties of the coke produced by low temperature oxidation reactions during crude oil in-situ combustion. Fuel 207, 179–188 (2017).

    Google Scholar 

  • Bhattacharya, S., Mallory, D. G., Moore, R. G., Ursenbach, M. G. & Mehta, S. A. Vapor-phase combustion in accelerating rate calorimetry for air-injection enhanced-oil-recovery processes. SPE Reservoir Eval. Eng. 20, 669–680 (2017).

    Google Scholar 

  • Gutiérrez, D. Development of a comprehensive and general approach to in situ combustion modelling. Development 2024, 03–26 (2024).

    Google Scholar 

  • Bhattacharya, S., Mallory, D., Moore, R., Ursenbach, M. & Mehta, S. in SPE Western Regional Meeting. SPE-180451-MS (SPE).

  • Antolinez, J. D., Miri, R. & Nouri, A. In situ combustion: A comprehensive review of the current state of knowledge. Energies 16, 6306 (2023).

    Google Scholar 

  • Mehrabi-Kalajahi, S., Varfolomeev, M. A., Sadikov, K. G., Mikhailova, A. N. & Feoktistov, D. A. The impact of the initiators on heavy oil oxidation in porous media during in situ combustion for in situ upgrading process. Energy Fuels 38, 4134–4141 (2024).

    Google Scholar 

  • Yuan, C. et al. in SPE Kuwait Oil and Gas Show and Conference. D033S013R006 (SPE).

  • Belgrave, J. D., Moore, R. G., Ursenbach, M. G. & Bennion, D. W. A comprehensive approach to in-situ combustion modeling. SPE Adv. Technol. Ser. 1, 98–107 (1993).

    Google Scholar 

  • Yamamoto, K., He, X. & Doolen, G. D. Simulation of combustion field with lattice Boltzmann method. J. Stat. Phys. 107, 367–383 (2002).

    MATH 

    Google Scholar 

  • Yamamoto, K., Takada, N. & Misawa, M. Combustion simulation with Lattice Boltzmann method in a three-dimensional porous structure. Proc. Combust. Inst. 30, 1509–1515 (2005).

    Google Scholar 

  • Xu, Q. et al. Coke formation and coupled effects on pore structure and permeability change during crude oil in situ combustion. Energy Fuels 30, 933–942 (2016).

    Google Scholar 

  • Zhao, S., Pu, W., Peng, X., Zhang, J. & Ren, H. Low-temperature oxidation of heavy crude oil characterized by TG, DSC, GC-MS, and negative ion ESI FT-ICR MS. Energy 214, 119004 (2021).

    Google Scholar 

  • Zhao, S., Pu, W., Pan, J., Chen, S. & Zhang, L. Thermo-oxidative characteristics and kinetics of light, heavy, and extra-heavy crude oils using accelerating rate calorimetry. Fuel 312, 123001 (2022).

    Google Scholar 

  • Askarova, A., Popov, E., Maerle, K. & Cheremisin, A. Comparative study of in-situ combustion tests on consolidated and crushed cores. SPE Reservoir Eval. Eng. 26, 167–179 (2023).

    Google Scholar 

  • Cao, D. et al. Correction of linear fracture density and error analysis using underground borehole data. J. Struct. Geol. 184, 105152 (2024).

    Google Scholar 

  • Yanchun, L. et al. Surrogate model for reservoir performance prediction with time-varying well control based on depth generative network. Pet. Explor. Dev. 51, 1287–1300 (2024).

    Google Scholar 

  • Zhang, Y. et al. Comparison of phenolic antioxidants’ impact on thermal oxidation stability of pentaerythritol ester insulating oil. IEEE Trans. Dielectr. Electr. Insul. https://doi.org/10.1109/TDEI.2024.3487148 (2024).

    Google Scholar 

  • Li, S. et al. The hidden vulnerabilities of pentaerythritol synthetic ester insulating oil for eco-friendly transformers: A dive into molecular behavior. IEEE Trans. Dielectr. Electr. Insul. https://doi.org/10.1109/TDEI.2024.3510476 (2024).

    Google Scholar 

  • Wang, C. et al. Integrating experimental study and intelligent modeling of pore evolution in the Bakken during simulated thermal progression for CO2 storage goals. Appl. Energy 359, 122693 (2024).

    Google Scholar 

  • Zhou, Y., Guan, W., Sun, Q., Zou, X. & He, Z. Effect of multi-scale rough surfaces on oil-phase trapping in fractures: Pore-scale modeling accelerated by wavelet decomposition. Comput. Geotech. 179, 106951 (2025).

    Google Scholar 

  • Zhang, S. et al. Probing the combustion characteristics of micron-sized aluminum particles enhanced with graphene fluoride. Combust. Flame 272, 113858 (2025).

    Google Scholar 

  • Gan, B. et al. Phase transitions of CH4 hydrates in mud-bearing sediments with oceanic laminar distribution: Mechanical response and stabilization-type evolution. Fuel 380, 133185 (2025).

    Google Scholar 

  • Zhang, L. et al. Effect of coal tar components and thermal polycondensation conditions on the formation of mesophase pitch. Materials 18, 1002 (2025).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rasouli, A., Dabiri, A. & Nezamabadi-pour, H. A multi-layer perceptron-based approach for prediction of the crude oil pyrolysis process. Energy Sources Part A Recovery Util. Environ. Eff. 37, 1464–1472 (2015).

    Google Scholar 

  • Norouzpour, M., Rasouli, A. R., Dabiri, A., Azdarpour, A. & Karaei, M. A. Prediction of crude oil pyrolysis process using radial basis function networks. QUID: Investigación, Ciencia Y Tecnología, 567–576 (2017).

  • Mohammadi, M.-R., Hemmati-Sarapardeh, A., Schaffie, M., Husein, M. M. & Ranjbar, M. Application of cascade forward neural network and group method of data handling to modeling crude oil pyrolysis during thermal enhanced oil recovery. J. Petrol. Sci. Eng. 205, 108836 (2021).

    Google Scholar 

  • Mohammadi, M.-R. et al. On the evaluation of crude oil oxidation during thermogravimetry by generalised regression neural network and gene expression programming: application to thermal enhanced oil recovery. Combust. Theor. Model. 25, 1268–1295 (2021).

    ADS 

    Google Scholar 

  • Hadavimoghaddam, F. et al. Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques. Sci. Rep. 13, 22649 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karimian, M., Schaffie, M. & Fazaelipoor, M. H. Estimation of the kinetic triplet for in-situ combustion of crude oil in the presence of limestone matrix. Fuel 209, 203–210 (2017).

    Google Scholar 

  • Karimian, M., Schaffie, M. & Fazaelipoor, M. H. Determination of activation energy as a function of conversion for the oxidation of heavy and light crude oils in relation to in situ combustion. J. Therm. Anal. Calorim. 125, 301–311 (2016).

    Google Scholar 

  • Li, Y.-B. et al. Low temperature oxidation characteristics analysis of ultra-heavy oil by thermal methods. J. Ind. Eng. Chem. 48, 249–258 (2017).

    Google Scholar 

  • Varfolomeev, M. A. et al. Chemical evaluation and kinetics of Siberian, north regions of Russia and Republic of Tatarstan crude oils. Energy Sources Part A Recovery Util. Environ. Eff. 38, 1031–1038 (2016).

    Google Scholar 

  • Pu, W., Chen, Y., Li, Y., Zou, P. & Li, D. Comparison of different kinetic models for heavy oil oxidation characteristic evaluation. Energy Fuels 31, 12665–12676 (2017).

    Google Scholar 

  • Wang, Y. et al. New insights into the oxidation behaviors of crude oils and their exothermic characteristics: Experimental study via simultaneous TGA/DSC. Fuel 219, 141–150 (2018).

    Google Scholar 

  • Kok, M. V., Varfolomeev, M. A. & Nurgaliev, D. K. Low-temperature oxidation reactions of crude oils using TGA–DSC techniques. J. Therm. Anal. Calorim. 141, 775–781 (2019).

    Google Scholar 

  • Li, Y.-B. et al. Study of the catalytic effect of copper oxide on the low-temperature oxidation of Tahe ultra-heavy oil. J. Therm. Anal. Calorim. 135, 3353–3362 (2019).

    ADS 

    Google Scholar 

  • Yuan, C. et al. Mechanistic and kinetic insight into catalytic oxidation process of heavy oil in in-situ combustion process using copper (II) stearate as oil soluble catalyst. Fuel 284, 118981 (2021).

    Google Scholar 

  • Zhao, S. et al. Low-temperature oxidation of light and heavy oils via thermal analysis: Kinetic analysis and temperature zone division. J. Petrol. Sci. Eng. 168, 246–255 (2018).

    Google Scholar 

  • Kök, M. V., Varfolomeev, M. A. & Nurgaliev, D. K. TGA and DSC investigation of different clay mineral effects on the combustion behavior and kinetics of crude oil from Kazan region, Russia. J. Petrol. Sci. Eng. 200, 108364 (2021).

    Google Scholar 

  • Yuan, C., Emelianov, D. A. & Varfolomeev, M. A. Oxidation behavior and kinetics of light, medium, and heavy crude oils characterized by thermogravimetry coupled with Fourier transform infrared spectroscopy. Energy Fuels 32, 5571–5580 (2018).

    Google Scholar 

  • Chen, H. et al. The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil. Energy 210, 118573 (2020).

    Google Scholar 

  • Ranjbar, M. & Pusch, G. Pyrolysis and combustion kinetics of crude oils, asphaltenes and resins in relation to thermal recovery processes. J. Anal. Appl. Pyrol. 20, 185–196 (1991).

    Google Scholar 

  • Kharazi Esfahani, P., Peiro Ahmady Langeroudy, K. & Khorsand Movaghar, M. R. Enhanced machine learning—ensemble method for estimation of oil formation volume factor at reservoir conditions. Sci. Rep. 13, 15199 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V. & Gulin, A. CatBoost: Unbiased boosting with categorical features. In Advances in Neural Information Processing Systems, Vol. 31 (2018).

  • Yu, R. et al. Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China. Energy 296, 131146 (2024).

    Google Scholar 

  • Pu, B. et al. Machine Learning Evaluation Method of Inter-well Sand Body Connectivity by CatBoost Model: A Field Example from Tight Oil Reservoir, Ordos Basin, China.

  • Kouassi, A. K. F. et al. Identification of karst cavities from 2D seismic wave impedance images based on Gradient-Boosting Decision Trees Algorithms (GBDT): Case of ordovician fracture-vuggy carbonate reservoir, Tahe Oilfield, Tarim Basin, China. Energies 16, 643 (2023).

    Google Scholar 

  • Hancock, J. T. & Khoshgoftaar, T. M. CatBoost for big data: An interdisciplinary review. J. Big Data 7, 94 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Esfandi, T., Sadeghnejad, S. & Jafari, A. Effect of reservoir heterogeneity on well placement prediction in CO2-EOR projects using machine learning surrogate models: Benchmarking of boosting-based algorithms. Geoenergy Sci. Eng. 233, 212564 (2024).

    Google Scholar 

  • Lv, Q. et al. Modelling minimum miscibility pressure of CO2-crude oil systems using deep learning, tree-based, and thermodynamic models: Application to CO2 sequestration and enhanced oil recovery. Sep. Purif. Technol. 310, 123086 (2023).

    Google Scholar 

  • Nakhaei-Kohani, R. et al. Extensive data analysis and modelling of carbon dioxide solubility in ionic liquids using chemical structure-based ensemble learning approaches. Fluid Phase Equilib. 585, 114166 (2024).

    Google Scholar 

  • Liu, B. & Li, C. Mining and analysis of production characteristics data of tight gas reservoirs. Processes 11, 3159 (2023).

    Google Scholar 

  • Chen, T. & Guestrin, C. in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 785–794.

  • Pan, S., Zheng, Z., Guo, Z. & Luo, H. An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. J. Petrol. Sci. Eng. 208, 109520 (2022).

    Google Scholar 

  • Xie, Z. et al. Prediction of conformance control performance for cyclic-steam-stimulated horizontal well using the XGBoost: A case study in the Chunfeng heavy oil reservoir. Energies 14, 8161 (2021).

    Google Scholar 

  • Gu, Y., Zhang, D. & Bao, Z. A new data-driven predictor, PSO-XGBoost, used for permeability of tight sandstone reservoirs: A case study of member of chang 4+ 5, western Jiyuan Oilfield, Ordos Basin. J. Petrol. Sci. Eng. 199, 108350 (2021).

    Google Scholar 

  • Mahdaviara, M., Sharifi, M. & Ahmadi, M. Toward evaluation and screening of the enhanced oil recovery scenarios for low permeability reservoirs using statistical and machine learning techniques. Fuel 325, 124795 (2022).

    Google Scholar 

  • Lv, Q. et al. Modeling thermo-physical properties of hydrogen utilizing machine learning schemes: Viscosity, density, diffusivity, and thermal conductivity. Int. J. Hydrogen Energy 72, 1127–1142 (2024).

    ADS 

    Google Scholar 

  • Dong, Y. et al. A physics-guided eXtreme gradient boosting model for predicting the initial productivity of oil wells. Geoenergy Sci. Eng. 231, 212402 (2023).

    Google Scholar 

  • Sun, H., Luo, Q., Xia, Z., Li, Y. & Yu, Y. Bottomhole pressure prediction of carbonate reservoirs using XGBoost. Processes 12, 125 (2024).

    Google Scholar 

  • Pirizadeh, M., Alemohammad, N., Manthouri, M. & Pirizadeh, M. A new machine learning ensemble model for class imbalance problem of screening enhanced oil recovery methods. J. Petrol. Sci. Eng. 198, 108214 (2021).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Google Scholar 

  • Hidayat, F. & Astsauri, T. M. S. Applied random forest for parameter sensitivity of low salinity water Injection (LSWI) implementation on carbonate reservoir. Alex. Eng. J. 61, 2408–2417 (2022).

    Google Scholar 

  • Rahimi, M. & Riahi, M. A. Reservoir facies classification based on random forest and geostatistics methods in an offshore oilfield. J. Appl. Geophys. 201, 104640 (2022).

    Google Scholar 

  • Zaiery, M., Kadkhodaie, A., Arian, M. & Maleki, Z. Application of artificial neural network models and random forest algorithm for estimation of fracture intensity from petrophysical data. J. Pet. Explor. Prod. Technol. 13, 1877–1887 (2023).

    Google Scholar 

  • Guo, J. et al. Optimized random forest method for 3D evaluation of coalbed methane content using geophysical logging data. ACS Omega 9, 35769–35788 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M., Feng, D., Li, D. & Wang, J. Reservoir parameter prediction based on the neural random forest model. Front. Earth Sci. 10, 888933 (2022).

    ADS 

    Google Scholar 

  • Zheng, H., Mahmoudzadeh, A., Amiri-Ramsheh, B. & Hemmati-Sarapardeh, A. Modeling viscosity of CO2–N2 gaseous mixtures using robust tree-based techniques: Extra tree, random forest, GBoost, and LightGBM. ACS Omega 8, 13863–13875 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Prediction of permeability using random forest and genetic algorithm model. Comput. Model. Eng. Sci. 125, 1135–1157 (2020).

    Google Scholar 

  • Song, L. et al. in Journal of Physics: Conference Series. 012084 (IOP Publishing).

  • Shen, B. et al. A novel CO2-EOR potential evaluation method based on BO-LightGBM algorithms using hybrid feature mining. Geoenergy Sci. Eng. 222, 211427 (2023).

    Google Scholar 

  • Wang, B., Wu, D., Zhang, K., Zhang, H. & Zhang, C. prediction model of fault block reservoir measure index based on 1DCNN-LightGBM. Sci. Program. 2023, 8555423 (2023).

    Google Scholar 

  • Liu, Y., Zhu, R., Zhai, S., Li, N. & Li, C. Lithofacies identification of shale formation based on mineral content regression using LightGBM algorithm: A case study in the Luzhou block, South Sichuan Basin, China. Energy Sci. Eng. 11, 4256–4272 (2023).

    Google Scholar 

  • Wang, X. et al. Prediction technology of a reservoir development model while drilling based on machine learning and its application. Processes 12, 975 (2024).

    Google Scholar 

  • Kumar, I., Tripathi, B. K. & Singh, A. Synthetic well log modeling with light gradient boosting machine for Assam-Arakan Basin, India. J. Appl. Geophys. 203, 104697 (2022).

    Google Scholar 

  • Ke, G. et al. Lightgbm: A highly efficient gradient boosting decision tree. In Advances in neural information processing systems, Vol. 30 (2017).

  • Mohammadi, M.-R., Larestani, A., Schaffie, M., Hemmati-Sarapardeh, A. & Ranjbar, M. Predictive modeling of CO2 solubility in piperazine aqueous solutions using boosting algorithms for carbon capture goals. Sci. Rep. 14, 22112 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohammadi, M.-R. et al. Modeling the solubility of light hydrocarbon gases and their mixture in brine with machine learning and equations of state. Sci. Rep. 12, 14943 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murugan, P., Mani, T., Mahinpey, N. & Asghari, K. The low temperature oxidation of Fosterton asphaltenes and its combustion kinetics. Fuel Process. Technol. 92, 1056–1061 (2011).

    Google Scholar 

  • Chen, G. et al. The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process. Fuel 126, 202–212 (2014).

    Google Scholar 

  • Xu, M., Wong, T.-C. & Chin, K.-S. Modeling daily patient arrivals at Emergency Department and quantifying the relative importance of contributing variables using artificial neural network. Decis. Support Syst. 54, 1488–1498 (2013).

    Google Scholar 

  • Madani, S. A. et al. Modeling of nitrogen solubility in normal alkanes using machine learning methods compared with cubic and PC-SAFT equations of state. Sci. Rep. 11, 24403 (2021).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leroy, A. M. & Rousseeuw, P. J. Robust regression and outlier detection. rrod (1987).

  • Goodall, C. R. 13 Computation using the QR decomposition (1993).

  • Gramatica, P. Principles of QSAR models validation: Internal and external. QSAR Comb. Sci. 26, 694–701 (2007).

    Google Scholar 

  • Lv, Q. et al. Application of group method of data handling and gene expression programming to modeling molecular diffusivity of CO2 in heavy crudes. Geoenergy Sci. Eng. 237, 212789 (2024).

    Google Scholar 

  • Rousseeuw, P. J. & Leroy, A. M. Robust Regression and Outlier Detection (John wiley & sons, Hoboken, 2005).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *