Bluemling, B., Mol, A. P. & Tu, Q. The social organization of agricultural biogas production and use. Energy Policy 63, 10–17 (2013).
Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D. & Kaliaguine, S. Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015).
Google Scholar
Struk, M., Kushkevych, I. & Vítězová, M. Biogas upgrading methods: recent advancements and emerging technologies. Rev. Environ. Sci. Biotechnol. 19, 651–671 (2020).
Google Scholar
Ahmed, S. F. et al. Biogas upgrading, economy and utilization: a review. Environ. Chem. Lett. 19, 4137–4164 (2021).
Google Scholar
Canevesi, R. L., Andreassen, K. A., Da Silva, E. A., Borba, C. E. & Grande, C. A. Pressure swing adsorption for biogas upgrading with carbon molecular sieve. Ind. Eng. Chem. Res. 57, 8057–8067 (2018).
Google Scholar
Shah, M. S., Tsapatsis, M. & Siepmann, J. I. Identifying optimal zeolitic sorbents for sweetening of highly sour natural gas. Angew. Chem. Int. Ed. 55, 5938–5942 (2016).
Google Scholar
Qiao, Z., Xu, Q. & Jiang, J. Computational screening of hydrophobic metal-organic frameworks for the separation of H2S and CO2 from natural gas. J. Mater. Chem. A 6, 18898–18905 (2018).
Google Scholar
Hoskins, B. F. & Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 5962–5964 (1989).
Google Scholar
Yaghi, O. & Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).
Google Scholar
Chui, S. S., Lo, S. M., Charmant, J. P., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science 283, 1148–1150 (1999).
Google Scholar
Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).
Google Scholar
Long, J. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).
Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).
Google Scholar
Horcajada, P. et al. Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).
Google Scholar
Li, H. et al. Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem 1, 100006 (2019).
Aniruddha, R., Sreedhar, I. & Reddy, B. M. MOFs in carbon capture – past, present and future. J. CO2 Util. 42, 101297 (2020).
Google Scholar
Moghadam, P. Z. et al. Targeted classification of metal-organic frameworks in the Cambridge Structural Database (CSD). Chem. Sci. 11, 8373–8387 (2020).
Google Scholar
Wilmer, C. E. et al. Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4, 83–89 (2012).
Google Scholar
Gómez-Gualdró, D. A. et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016).
Avci, G., Velioglu, S. & Keskin, S. High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture. ACS Appl. Mater. Interfaces 10, 33693–33706 (2018).
Google Scholar
Sikora, B. J., Wilmer, C. E., Greenfield, M. L. & Snurr, R. Q. Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal-organic frameworks. Chem. Sci. 3, 2177–2396 (2012).
Glover, J. & Besley, E. A high-throughput screening of metal-organic framework based membranes for biogas upgrading. Faraday Discuss. 231, 235–257 (2021).
Google Scholar
Li, X. et al. Machine learning-assisted crystal engineering of a zeolite. Nat. Commun. 14, 3152 (2023).
Google Scholar
Boobier, S., Hose, D. R., Blacker, A. J. & Nguyen, B. N. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat. Commun. 11, 5753 (2020).
Google Scholar
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).
Google Scholar
Ucak, U. V., Ashyrmamatov, I., Ko, J. & Lee, J. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nat. Commun. 13, 1186 (2022).
Google Scholar
Orhan, I., Le, T., Babarao, R. & Thornton, A. Accelerating the prediction of CO2 capture at low partial pressures in metal-organic frameworks using new machine learning descriptors. Commun. Chem. 6, 214 (2023).
Google Scholar
Cao, Z., Magar, R., Wang, Y. & Farimani, A. MOFormer: self-supervised transformer model for metal-organic framework property prediction. J. Am. Chem. Soc. 145, 2958–2967 (2023).
Google Scholar
Simon, C. M., Mercado, R., Schnell, S. K., Smit, B. & Haranczyk, M. What are the best materials to separate a xenon/krypton mixture? Chem. Mater. 27, 4459–4475 (2015).
Google Scholar
Fernandez, M., Woo, T. K., Wilmer, C. E. & Snurr, R. Q. Large-scale Quantitative Structure-Property Relationship (QSPR) analysis of methane storage in metal-organic frameworks. J. Phys. Chem. Lett. 117, 7681–7689 (2013).
Google Scholar
Fernandez, M., Boyd, P. G., Daff, T. D., Aghaji, M. Z. & Woo, T. K. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture. J. Phys. Chem. Lett. 5, 3056–3060 (2014).
Google Scholar
Suyetin, M. The application of machine learning for predicting the methane uptake and working capacity of MOFs. Faraday Discuss. 231, 224–234 (2021).
Google Scholar
Shi, Z. et al. Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks. Mol. Syst. Des. Eng. 5, 725–742 (2020).
Google Scholar
Pétuya, R. et al. Machine-learning prediction of metal-organic framework guest accessibility from linker and metal chemistry. Ang. Chem. Int. Ed. 61, e202114573 (2022).
Bennett, S. & Jelfs, K. E. Porous molecular materials: exploring structure and property space with software and artificial intelligence. in AI-Guided Design and Pproperty Prediction for Zeolites and Nanoporous Materials, (eds. Sastre, G. & Daeyaert, F.), 251–282 (Wiley, Chichester, UK, 2023).
Nandy, A., Duan, C. & Kulik, H. Using machine learning and data mining to leverage community knowledge for the engineering of stable metal-organic frameworks. J. Am. Chem. Soc. 143, 17535–17547 (2021).
Google Scholar
Bailey, T. et al. Gradient boosted machine learning model to Predict H2, CH4, and CO2 uptake in metal-organic frameworks using experimental data. J. Chem. Inf. Model. 63, 4545–4551 (2023).
Google Scholar
Aghaji, M. Z., Fernandez, M., Boyd, P. G., Daff, T. D. & Woo, T. K. Quantitative structure-property relationship models for recognizing metal organic frameworks (MOFs) with High CO2 working capacity and CO2/CH4 selectivity for methane purification. Eur. J. Inorg. Chem. 2016, 4505–4511 (2016).
Google Scholar
Yulia, F., Chairina, I. & Zulys, A. Multi-objective genetic algorithm optimization with an artificial neural network for CO2/CH4 adsorption prediction in metal-organic framework. Therm. Sci. Eng. Prog. 25, 100967 (2021).
Google Scholar
Cheng, X. et al. Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation. J. Membr. Sci. 672, 121430 (2023).
Google Scholar
Demir, H., Daglar, H., Gulbalkan, H., Aksu, G. & Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 484, 215112 (2023).
Google Scholar
Wu, X., Xiang, S., Su, J. & Cai, W. Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-organic frameworks based on machine learning. J. Phys. Chem. C. 123, 8550–8559 (2019).
Google Scholar
Chen, T. & Manz, T. A. Identifying Misbonded Atoms in the 2019 CoRE Metal-Organic Framework Database. RSC Adv. 10, 26944–26951 (2020).
Google Scholar
Burner, J. et al. ARC-MOF: a diverse database of metal-organic frameworks with DFT-derived partial atomic charges and descriptors for machine learning. Chem. Mater. 35, 900–916 (2023).
Google Scholar
Anderson, R. & Gómez-Gualdrón, D. A. Large-scale free energy calculations on a computational metal-organic frameworks database: toward synthetic likelihood predictions. Chem. Mater. 32, 8106–8119 (2020).
Google Scholar
Cooley, I. & Besley, E. Do residual solvent molecules always hinder gas sorption in metal-organic frameworks? Chem. Mater. 36, 219–231 (2024).
Google Scholar
Velioglu, S. & Keskin, S. Revealing the effect of structure curations on the simulated CO2 separation performances of MOFs. Mater. Adv. 1, 341–353 (2020).
Google Scholar
Fan, F. J. & Shi, Y. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. Bioorg. Med. Chem. 72, 117003 (2022).
Google Scholar
Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).
Google Scholar
Jablonka, K. M. et al. Connecting lab experiments with computer experiments: making “routine” simulations routine (ChemRxiv Preprint). https://doi.org/10.26434/chemrxiv-2021-h3381-v2 (2021).
Charlambous, C. et al. Chedding Light on the Stakeholders’ Perspectives for Carbon Capture. (ChemRxiv Preprint). https://doi.org/10.26434/chemrxiv-2023-sn90q (2023).
Fu, X., Xie, T., Rosen, A. S., Jaakkola, T. & Smith, J. MOFDiff: Coarse-Grained Diffusion for Metal-Organic Framework Design (Rxiv Preprint). https://doi.org/10.48550/arXiv.2310.10732 (2023).
Moghadam, P. Z. et al. Development of a Cambridge Structural Database Subset: a collection of metal-organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).
Google Scholar
Jablonka, K. M., Rosen, A. S., Krishnapriyan, A. S. & Smit, B. An ecosystem for digital reticular chemistry. ACS Cent. Sci. 9, 563–581 (2023).
Google Scholar
Ongari, D., Talirz, L., Jablonka, K. M., Siderius, D. W. & Smit, B. Data-driven matching of experimental crystal structures and gas adsorption isotherms of metal-organic frameworks. J. Chem. Eng. Data 67, 1743–1756 (2022).
Google Scholar
Cooley, I., Efford, L. & Besley, E. Computational predictions for effective separation of Xenon/ Krypton gas mixtures in the MFM family of metal-organic frameworks. J. Phys. Chem. C. 126, 11475–11486 (2022).
Google Scholar
Humby, J. D. et al. Host-guest selectivity in a series of isoreticular metal-organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions. Chem. Sci. 10, 1098–1106 (2019).
Google Scholar
Shang, J. et al. Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification. Ing. Eng. Chem. Res 59, 7857–7865 (2020).
Google Scholar
PG&E. Pressure Swing Adsorption Technical Analysis [White paper]. https://www.pge.com/pge_global/common/pdfs/for-our-business-partners/interconnection-renewables/interconnections-renewables/PressureSwingAdsorption_TechnicalAnalysis.pdf (2018).
Ko, D., Siriwardane, R. & Biegler, L. T. Optimization of a pressure-swing adsorption process using Zeolite 13X for CO2 Sequestration. Ind. Eng. Chem. Res. 42, 339–348 (2003).
Google Scholar
Jiang, L. et al. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl. Therm. Eng. 169, 114973 (2020).
Google Scholar
Chen, L. et al. Temperature swing adsorption for CO2 capture: thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger. Appl. Therm. Eng. 199, 117538 (2021).
Google Scholar
Huertas, J. I., Giraldo, N. & Izquierdo, S. Mass Transfer in Chemical Engineering Processes (InTech, 2010).
Ghanbari, T., Abnisa, F. & Wan Daud, W. M. A. A review on production of Metal Organic Frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 707, 135090 (2020).
Google Scholar
Zoubritzky, L. & Coudert, F. X. CrystalNets.jl: identification of crystal topologies. SciPost Chem. 1, 005 (2022).
Schneemann, A. et al. 2D framework materials for energy applications. Chem. Sci. 12, 1600–1619 (2021).
Google Scholar
Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput. Mater. 2, 1–7 (2016).
Moosavi, S. M. et al. Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068 (2020).
Google Scholar
Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 149, 134–141 (2012).
Google Scholar
Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).
Google Scholar
Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkx. In Varoquaux, G., Vaught, T. & Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, 11–15 (Pasadena, CA USA, 2008).
Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016).
Google Scholar
Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard III, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).
Google Scholar
Ongari, D. et al. Accurate characterization of the pore volume in microporous crystalline materials. Langmuir 33, 14529–14538 (2017).
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
