Machine learning insights into predicting biogas separation in metal-organic frameworks

Machine Learning


  • Bluemling, B., Mol, A. P. & Tu, Q. The social organization of agricultural biogas production and use. Energy Policy 63, 10–17 (2013).

    Google Scholar 

  • Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D. & Kaliaguine, S. Membrane gas separation technologies for biogas upgrading. RSC Adv. 5, 24399–24448 (2015).

    CAS 

    Google Scholar 

  • Struk, M., Kushkevych, I. & Vítězová, M. Biogas upgrading methods: recent advancements and emerging technologies. Rev. Environ. Sci. Biotechnol. 19, 651–671 (2020).

    CAS 

    Google Scholar 

  • Ahmed, S. F. et al. Biogas upgrading, economy and utilization: a review. Environ. Chem. Lett. 19, 4137–4164 (2021).

    CAS 

    Google Scholar 

  • Canevesi, R. L., Andreassen, K. A., Da Silva, E. A., Borba, C. E. & Grande, C. A. Pressure swing adsorption for biogas upgrading with carbon molecular sieve. Ind. Eng. Chem. Res. 57, 8057–8067 (2018).

    CAS 

    Google Scholar 

  • Shah, M. S., Tsapatsis, M. & Siepmann, J. I. Identifying optimal zeolitic sorbents for sweetening of highly sour natural gas. Angew. Chem. Int. Ed. 55, 5938–5942 (2016).

    CAS 

    Google Scholar 

  • Qiao, Z., Xu, Q. & Jiang, J. Computational screening of hydrophobic metal-organic frameworks for the separation of H2S and CO2 from natural gas. J. Mater. Chem. A 6, 18898–18905 (2018).

    CAS 

    Google Scholar 

  • Hoskins, B. F. & Robson, R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111, 5962–5964 (1989).

    CAS 

    Google Scholar 

  • Yaghi, O. & Li, H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995).

    CAS 

    Google Scholar 

  • Chui, S. S., Lo, S. M., Charmant, J. P., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2 (H2O)3]n. Science 283, 1148–1150 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Li, H., Eddaoudi, M., O’Keeffe, M. & Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999).

    CAS 

    Google Scholar 

  • Long, J. et al. Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Google Scholar 

  • Kreno, L. E. et al. Metal-organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Horcajada, P. et al. Metal-organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Li, H. et al. Porous metal-organic frameworks for gas storage and separation: status and challenges. EnergyChem 1, 100006 (2019).

    Google Scholar 

  • Aniruddha, R., Sreedhar, I. & Reddy, B. M. MOFs in carbon capture – past, present and future. J. CO2 Util. 42, 101297 (2020).

    CAS 

    Google Scholar 

  • Moghadam, P. Z. et al. Targeted classification of metal-organic frameworks in the Cambridge Structural Database (CSD). Chem. Sci. 11, 8373–8387 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilmer, C. E. et al. Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem. 4, 83–89 (2012).

    CAS 

    Google Scholar 

  • Gómez-Gualdró, D. A. et al. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 9, 3279–3289 (2016).

    Google Scholar 

  • Avci, G., Velioglu, S. & Keskin, S. High-throughput screening of MOF adsorbents and membranes for H2 purification and CO2 capture. ACS Appl. Mater. Interfaces 10, 33693–33706 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikora, B. J., Wilmer, C. E., Greenfield, M. L. & Snurr, R. Q. Thermodynamic analysis of Xe/Kr selectivity in over 137 000 hypothetical metal-organic frameworks. Chem. Sci. 3, 2177–2396 (2012).

    Google Scholar 

  • Glover, J. & Besley, E. A high-throughput screening of metal-organic framework based membranes for biogas upgrading. Faraday Discuss. 231, 235–257 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Li, X. et al. Machine learning-assisted crystal engineering of a zeolite. Nat. Commun. 14, 3152 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boobier, S., Hose, D. R., Blacker, A. J. & Nguyen, B. N. Machine learning with physicochemical relationships: solubility prediction in organic solvents and water. Nat. Commun. 11, 5753 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ucak, U. V., Ashyrmamatov, I., Ko, J. & Lee, J. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments. Nat. Commun. 13, 1186 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Orhan, I., Le, T., Babarao, R. & Thornton, A. Accelerating the prediction of CO2 capture at low partial pressures in metal-organic frameworks using new machine learning descriptors. Commun. Chem. 6, 214 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, Z., Magar, R., Wang, Y. & Farimani, A. MOFormer: self-supervised transformer model for metal-organic framework property prediction. J. Am. Chem. Soc. 145, 2958–2967 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, C. M., Mercado, R., Schnell, S. K., Smit, B. & Haranczyk, M. What are the best materials to separate a xenon/krypton mixture? Chem. Mater. 27, 4459–4475 (2015).

    CAS 

    Google Scholar 

  • Fernandez, M., Woo, T. K., Wilmer, C. E. & Snurr, R. Q. Large-scale Quantitative Structure-Property Relationship (QSPR) analysis of methane storage in metal-organic frameworks. J. Phys. Chem. Lett. 117, 7681–7689 (2013).

    CAS 

    Google Scholar 

  • Fernandez, M., Boyd, P. G., Daff, T. D., Aghaji, M. Z. & Woo, T. K. Rapid and accurate machine learning recognition of high performing metal organic frameworks for CO2 capture. J. Phys. Chem. Lett. 5, 3056–3060 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Suyetin, M. The application of machine learning for predicting the methane uptake and working capacity of MOFs. Faraday Discuss. 231, 224–234 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Shi, Z. et al. Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks. Mol. Syst. Des. Eng. 5, 725–742 (2020).

    CAS 

    Google Scholar 

  • Pétuya, R. et al. Machine-learning prediction of metal-organic framework guest accessibility from linker and metal chemistry. Ang. Chem. Int. Ed. 61, e202114573 (2022).

    Google Scholar 

  • Bennett, S. & Jelfs, K. E. Porous molecular materials: exploring structure and property space with software and artificial intelligence. in AI-Guided Design and Pproperty Prediction for Zeolites and Nanoporous Materials, (eds. Sastre, G. & Daeyaert, F.), 251–282 (Wiley, Chichester, UK, 2023).

  • Nandy, A., Duan, C. & Kulik, H. Using machine learning and data mining to leverage community knowledge for the engineering of stable metal-organic frameworks. J. Am. Chem. Soc. 143, 17535–17547 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Bailey, T. et al. Gradient boosted machine learning model to Predict H2, CH4, and CO2 uptake in metal-organic frameworks using experimental data. J. Chem. Inf. Model. 63, 4545–4551 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aghaji, M. Z., Fernandez, M., Boyd, P. G., Daff, T. D. & Woo, T. K. Quantitative structure-property relationship models for recognizing metal organic frameworks (MOFs) with High CO2 working capacity and CO2/CH4 selectivity for methane purification. Eur. J. Inorg. Chem. 2016, 4505–4511 (2016).

    CAS 

    Google Scholar 

  • Yulia, F., Chairina, I. & Zulys, A. Multi-objective genetic algorithm optimization with an artificial neural network for CO2/CH4 adsorption prediction in metal-organic framework. Therm. Sci. Eng. Prog. 25, 100967 (2021).

    CAS 

    Google Scholar 

  • Cheng, X. et al. Multi-scale design of MOF-based membrane separation for CO2/CH4 mixture via integration of molecular simulation, machine learning and process modeling and simulation. J. Membr. Sci. 672, 121430 (2023).

    CAS 

    Google Scholar 

  • Demir, H., Daglar, H., Gulbalkan, H., Aksu, G. & Keskin, S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord. Chem. Rev. 484, 215112 (2023).

    CAS 

    Google Scholar 

  • Wu, X., Xiang, S., Su, J. & Cai, W. Understanding quantitative relationship between methane storage capacities and characteristic properties of metal-organic frameworks based on machine learning. J. Phys. Chem. C. 123, 8550–8559 (2019).

    CAS 

    Google Scholar 

  • Chen, T. & Manz, T. A. Identifying Misbonded Atoms in the 2019 CoRE Metal-Organic Framework Database. RSC Adv. 10, 26944–26951 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burner, J. et al. ARC-MOF: a diverse database of metal-organic frameworks with DFT-derived partial atomic charges and descriptors for machine learning. Chem. Mater. 35, 900–916 (2023).

    CAS 

    Google Scholar 

  • Anderson, R. & Gómez-Gualdrón, D. A. Large-scale free energy calculations on a computational metal-organic frameworks database: toward synthetic likelihood predictions. Chem. Mater. 32, 8106–8119 (2020).

    CAS 

    Google Scholar 

  • Cooley, I. & Besley, E. Do residual solvent molecules always hinder gas sorption in metal-organic frameworks? Chem. Mater. 36, 219–231 (2024).

    CAS 

    Google Scholar 

  • Velioglu, S. & Keskin, S. Revealing the effect of structure curations on the simulated CO2 separation performances of MOFs. Mater. Adv. 1, 341–353 (2020).

    CAS 

    Google Scholar 

  • Fan, F. J. & Shi, Y. Effects of data quality and quantity on deep learning for protein-ligand binding affinity prediction. Bioorg. Med. Chem. 72, 117003 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Artrith, N. et al. Best practices in machine learning for chemistry. Nat. Chem. 13, 505–508 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jablonka, K. M. et al. Connecting lab experiments with computer experiments: making “routine” simulations routine (ChemRxiv Preprint). https://doi.org/10.26434/chemrxiv-2021-h3381-v2 (2021).

  • Charlambous, C. et al. Chedding Light on the Stakeholders’ Perspectives for Carbon Capture. (ChemRxiv Preprint). https://doi.org/10.26434/chemrxiv-2023-sn90q (2023).

  • Fu, X., Xie, T., Rosen, A. S., Jaakkola, T. & Smith, J. MOFDiff: Coarse-Grained Diffusion for Metal-Organic Framework Design (Rxiv Preprint). https://doi.org/10.48550/arXiv.2310.10732 (2023).

  • Moghadam, P. Z. et al. Development of a Cambridge Structural Database Subset: a collection of metal-organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).

    CAS 

    Google Scholar 

  • Jablonka, K. M., Rosen, A. S., Krishnapriyan, A. S. & Smit, B. An ecosystem for digital reticular chemistry. ACS Cent. Sci. 9, 563–581 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ongari, D., Talirz, L., Jablonka, K. M., Siderius, D. W. & Smit, B. Data-driven matching of experimental crystal structures and gas adsorption isotherms of metal-organic frameworks. J. Chem. Eng. Data 67, 1743–1756 (2022).

    CAS 

    Google Scholar 

  • Cooley, I., Efford, L. & Besley, E. Computational predictions for effective separation of Xenon/ Krypton gas mixtures in the MFM family of metal-organic frameworks. J. Phys. Chem. C. 126, 11475–11486 (2022).

    CAS 

    Google Scholar 

  • Humby, J. D. et al. Host-guest selectivity in a series of isoreticular metal-organic frameworks: observation of acetylene-to-alkyne and carbon dioxide-to-amide interactions. Chem. Sci. 10, 1098–1106 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Shang, J. et al. Separation of CO2 and CH4 by pressure swing adsorption using a molecular trapdoor chabazite adsorbent for natural gas purification. Ing. Eng. Chem. Res 59, 7857–7865 (2020).

    CAS 

    Google Scholar 

  • PG&E. Pressure Swing Adsorption Technical Analysis [White paper]. https://www.pge.com/pge_global/common/pdfs/for-our-business-partners/interconnection-renewables/interconnections-renewables/PressureSwingAdsorption_TechnicalAnalysis.pdf (2018).

  • Ko, D., Siriwardane, R. & Biegler, L. T. Optimization of a pressure-swing adsorption process using Zeolite 13X for CO2 Sequestration. Ind. Eng. Chem. Res. 42, 339–348 (2003).

    CAS 

    Google Scholar 

  • Jiang, L. et al. Comparative analysis on temperature swing adsorption cycle for carbon capture by using internal heat/mass recovery. Appl. Therm. Eng. 169, 114973 (2020).

    CAS 

    Google Scholar 

  • Chen, L. et al. Temperature swing adsorption for CO2 capture: thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger. Appl. Therm. Eng. 199, 117538 (2021).

    CAS 

    Google Scholar 

  • Huertas, J. I., Giraldo, N. & Izquierdo, S. Mass Transfer in Chemical Engineering Processes (InTech, 2010).

  • Ghanbari, T., Abnisa, F. & Wan Daud, W. M. A. A review on production of Metal Organic Frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 707, 135090 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Zoubritzky, L. & Coudert, F. X. CrystalNets.jl: identification of crystal topologies. SciPost Chem. 1, 005 (2022).

    Google Scholar 

  • Schneemann, A. et al. 2D framework materials for energy applications. Chem. Sci. 12, 1600–1619 (2021).

    CAS 

    Google Scholar 

  • Ward, L., Agrawal, A., Choudhary, A. & Wolverton, C. A general-purpose machine learning framework for predicting properties of inorganic materials. Npj Comput. Mater. 2, 1–7 (2016).

    Google Scholar 

  • Moosavi, S. M. et al. Understanding the diversity of the metal-organic framework ecosystem. Nat. Commun. 11, 4068 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mater. 149, 134–141 (2012).

    CAS 

    Google Scholar 

  • Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).

    CAS 

    Google Scholar 

  • Hagberg, A. A., Schult, D. A. & Swart, P. J. Exploring network structure, dynamics, and function using networkx. In Varoquaux, G., Vaught, T. & Millman, J. (eds.) Proceedings of the 7th Python in Science Conference, 11–15 (Pasadena, CA USA, 2008).

  • Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016).

    CAS 

    Google Scholar 

  • Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard III, W. A. & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    CAS 

    Google Scholar 

  • Ongari, D. et al. Accurate characterization of the pore volume in microporous crystalline materials. Langmuir 33, 14529–14538 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *