Machine learning in preclinical drug discovery

Machine Learning


  • Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schenone, M., Dančík, V., Wagner, B. K. & Clemons, P. A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 9, 232–240 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ashenden, S. K. in The Era of Artificial Intelligence, Machine Learning, and Data Science in the Pharmaceutical Industry Ch. 6 (Elsevier, 2021).

  • Smietana, K., Siatkowski, M. & Møller, M. Trends in clinical success rates. Nat. Rev. Drug Discov. 15, 379–380 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Janai, J., Güney, F., Behl, A. & Geiger, A. Computer vision for autonomous vehicles: problems, datasets and state of the art. Found. Trends Comp. Graph. Vis. 12, 1–308 (2020).

    Google Scholar 

  • Goldberg, S. B. et al. Machine learning and natural language processing in psychotherapy research: alliance as example use case. J. Couns. Psychol. 67, 438–448 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peterson, A. A. & Liu, D. R. Small-molecule discovery through DNA-encoded libraries. Nat. Rev. Drug Discov. 22, 699–722 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lim, K. S. et al. Machine learning on DNA-encoded library count data using an uncertainty-aware probabilistic loss function. J. Chem. Inf. Model. 62, 2316–2331 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hou, R., Xie, C., Gui, Y., Li, G. & Li, X. Machine-learning-based data analysis method for cell-based selection of DNA-encoded libraries. ACS Omega 8, 19057–19071 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Van de Sande, B. et al. Applications of single-cell RNA sequencing in drug discovery and development. Nat. Rev. Drug Discov. 22, 496–520 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F. et al. scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat. Mach. Intell. 4, 852–866 (2022).

    Article 

    Google Scholar 

  • Chen, J. et al. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data. Nat. Commun. 13, 6494 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Godinez, W. J., Hossain, I., Lazic, S. E., Davies, J. W. & Zhang, X. A multi-scale convolutional neural network for phenotyping high-content cellular images. Bioinformatics 33, 2010–2019 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Coley, C. W., Barzilay, R., Green, W. H., Jaakkola, T. S. & Jensen, K. F. Convolutional embedding of attributed molecular graphs for physical property prediction. J. Chem. Inf. Model. 57, 1757–1772 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jin, W. et al. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl Acad. Sci. USA 118, e2105070118 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vamathevan, J. et al. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 18, 463–477 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rogers, D. & Hahn, M. Extended-connectivity fingerprints. J. Chem. Inf. Model. 50, 742–754 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fernández-De Gortari, E., García-Jacas, C. R., Martinez-Mayorga, K. & Medina-Franco, J. L. Database fingerprint (DFP): an approach to represent molecular databases. J. Cheminform. 9, 9 (2017).

    Google Scholar 

  • Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. https://doi.org/10.1038/s41589-023-01349-8 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Corsello, S. M. et al. The Drug Repurposing Hub: a next-generation drug library and information resource. Nat. Med. 23, 405–408 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bender, B. J. et al. A practical guide to large-scale docking. Nat. Protoc. 16, 4799–4832 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gentile, F. et al. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with Deep Docking. Nat. Protoc. 17, 672–697 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tropsha, A., Isayev, O., Varnek, A., Schneider, G. & Cherkasov, A. Integrating QSAR modelling and deep learning in drug discovery: the emergence of deep QSAR. Nat. Rev. Drug Discov. 23, 141–155 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Acharya, A. et al. Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J. Chem. Inf. Model.60, 5832–5852 (2020).

  • Muratov, E. N. et al. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem. Soc. Rev. 50, 9121–9151 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sterling, T. & Irwin, J. J. ZINC 15 — ligand discovery for everyone. J. Chem. Inf. Model. 55, 2324–2337 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rossetti, G. G. et al. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits. Sci. Rep. 12, 2505 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Reymond, J. L. The chemical space project. Acc. Chem. Res. 48, 722–730 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anstine, D. M. & Isayev, O. Generative models as an emerging paradigm in the chemical sciences. J. Am. Chem. Soc. 145, 8736–8750 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jin, W., Barzilay, R. & Jaakkola, T. Junction tree variational autoencoder for molecular graph generation. Preprint at arxiv.org/abs/1802.04364 (2018).

  • Godinez, W. J. et al. Design of potent antimalarials with generative chemistry. Nat. Mach. Intell. 4, 180–186 (2022).

    Article 

    Google Scholar 

  • Walters, W. P. & Murcko, M. Assessing the impact of generative AI on medicinal chemistry. Nat. Biotechnol. 38, 143–145 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cesaro, A., Bagheri, M., Torres, M., Wan, F. & de la Fuente-Nunez, C. Deep learning tools to accelerate antibiotic discovery. Expert Opin. Drug Discov. 18, 1245–1257 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Rezende, D. J. & Mohamed, S. Variational inference with normalizing flows. In Proc. 32nd International Conference on Machine Learning 2, 1530–1538 (PMLR, 2015).

  • Shekhovtsov, A., Schlesinger, D. & Flach, B. VAE approximation error: ELBO and exponential families. Preprint at arxiv.org/abs/2102.09310 (2021).

  • Shi, C. et al. GraphAF: a flow-based autoregressive model for molecular graph generation. Preprint at arxiv.org/abs/2001.09382 (2020).

  • Hoogeboom, E., Satorras, V. G., Vignac, C. & Welling, M. Equivariant diffusion for molecule generation in 3D. In Proc. 39th International Conference on Machine Learning 8867–8887 (2022).

  • Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).

    CAS 

    Google Scholar 

  • Grisoni, F. Chemical language models for de novo drug design: challenges and opportunities. Curr. Opin. Struct. Biol. 79, 102527 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Flam-Shepherd, D., Zhu, K. & Aspuru-Guzik, A. Language models can learn complex molecular distributions. Nat. Commun. 13, 3293 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Skinnider, M. A., Greg Stacey, R., Wishart, D. S. & Foster, L. J. Chemical language models enable navigation in sparsely populated chemical space. Nat. Mach. Intell. 3, 759–770 (2021).

  • Moret, M., Friedrich, L., Grisoni, F., Merk, D. & Schneider, G. Generative molecular design in low data regimes. Commun. Chem. 5, 129 (2022).

    Google Scholar 

  • Ballarotto, M. et al. De novo design of Nurr1 agonists via fragment-augmented generative deep learning in low-data regime. J. Med. Chem. 66, 8170–8177 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moret, M. et al. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun. 14, 114 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Grisoni, F. et al. Combining generative artificial intelligence and on-chip synthesis for de novo drug design. Sci. Adv. 7, 3338–3349 (2021).

    Article 

    Google Scholar 

  • Merk, D., Friedrich, L., Grisoni, F. & Schneider, G. De novo design of bioactive small molecules by artificial intelligence. Mol. Inf. 37, 1700153 (2018).

    Article 

    Google Scholar 

  • Vaswani, A. et al. Attention is all you need. Preprint at arxiv.org/abs/1706.03762 (2023).

  • Bagal, V., Aggarwal, R., Vinod, P. K. & Priyakumar, U. D. MolGPT: molecular generation using a transformer-decoder model. J. Chem. Inf. Model. 62, 2064–2076 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Brown, N., Fiscato, M., Segler, M. H. S. & Vaucher, A. C. GuacaMol: benchmarking models for de novo molecular design. J. Chem. Inf. Model. 59, 1096–1108 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Polykovskiy, D. et al. Molecular sets (MOSES): a benchmarking platform for molecular generation models. Front. Pharmacol. 11, 565644 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Boiko, D. A., MacKnight, R., Kline, B. & Gomes, G. Autonomous chemical research with large language models. Nature 624, 570–578 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jablonka, K. M., Schwaller, P., Ortega-Guerrero, A. & Smit, B. Leveraging large language models for predictive chemistry. Nat. Mach. Intell. 6, 161–169 (2024).

    Article 

    Google Scholar 

  • Born, J. & Manica, M. Regression Transformer enables concurrent sequence regression and generation for molecular language modelling. Nat. Mach. Intell. 5, 432–444 (2023).

    Article 

    Google Scholar 

  • Frey, N. C. et al. Neural scaling of deep chemical models. Nat. Mach. Intell. 5, 1297–1305 (2023).

    Article 

    Google Scholar 

  • Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Sci. Rep. 11, 321 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stsiapanava, A. et al. Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH. Nat. Struct. Mol. Biol. 29, 190–193 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, H. et al. Cryo-EM structures of human hepatitis B and woodchuck hepatitis virus small spherical subviral particles. Sci. Adv. 8, eabo4184 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ren, F. et al. AlphaFold accelerates artificial intelligence powered drug discovery: efficient discovery of a novel CDK20 small molecule inhibitor. Chem. Sci. 14, 1443–1452 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, Q. et al. Structural comparison and drug screening of spike proteins of ten SARS-CoV-2 variants. Research 2022, 9781758 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, Q., Xia, D., Syed, A. A. S., Wang, Z. & Shi, Y. Highly accurate protein structure prediction and drug screen of monkeypox virus proteome. J. Infect. 86, 66–117 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ivanenkov, Y. A. et al. Chemistry42: an AI-driven platform for molecular design and optimization. J. Chem. Inf. Model. 63, 695–701 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Van Wart, H. E. & Birkedal-Hansen, H. The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc. Natl Acad. Sci. USA 87, 5578–5582 (1990).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Michaud, J. M., Madani, A. & Fraser, J. S. A language model beats AlphaFold2 on orphans. Nat. Biotechnol. 40, 1576–1577 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, R. et al. High-resolution de novo structure prediction from primary sequence. Preprint at bioRxiv https://doi.org/10.1101/2022.07.21.500999 (2022).

  • Fang, X. et al. A method for multiple-sequence-alignment-free protein structure prediction using a protein language model. Nat. Mach. Intell. 5, 1087–1096 (2023).

    Article 

    Google Scholar 

  • Madani, A. et al. Large language models generate functional protein sequences across diverse families. Nat. Biotechnol. 41, 1099–1106 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).

  • Corso, G., Stärk, H., Barzilay, R. & Jaakkola, T. DiffDock: diffusion steps, twists, and turns for molecular docking. Preprint at arxiv.org/abs/2210.01776 (2022).

  • Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Theodoris, C. V. et al. Transfer learning enables predictions in network biology. Nature 618, 616–624 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hughes, J. P., Rees, S. S., Kalindjian, S. B. & Philpott, K. L. Principles of early drug discovery. Br. J. Pharmacol. 162, 1239–1249 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodnow, R. A. Hit and lead identification: integrated technology-based approaches. Drug Discov. Today Technol. 3, 367–375 (2006).

    Article 

    Google Scholar 

  • Yang, L. et al. Transformer-based deep learning method for optimizing ADMET properties of lead compounds. Phys. Chem. Chem. Phys. 25, 2377–2385 (2023).

    PubMed 

    Google Scholar 

  • Chen, Y., Yu, X., Li, W., Tang, Y. & Liu, G. In silico prediction of hERG blockers using machine learning and deep learning approaches. J. Appl. Toxicol. 43, 1462–1475 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sharma, B. et al. Accurate clinical toxicity prediction using multi-task deep neural nets and contrastive molecular explanations. Sci. Rep. 13, 4908 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sun, D., Gao, W., Hu, H. & Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 12, 3049–3062 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov. 3, 711–716 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337–341 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Coutinho, A. L. et al. A robust, viable, and resource sparing HPLC-based log P method applied to common drugs. Int. J. Pharm. 644, 123325 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Faller, B. & Ertl, P. Computational approaches to determine drug solubility. Adv. Drug Deliv. Rev. 59, 533–545 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Aliagas, I., Gobbi, A., Lee, M. L. & Sellers, B. D. Comparison of log P and log D correction models trained with public and proprietary data sets. J. Comput. Aided Mol. Des. 36, 253–262 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Win, Z. M., Cheong, A. M. Y. & Hopkins, W. S. Using machine learning to predict partition coefficient (log P) and distribution coefficient (log D) with molecular descriptors and liquid chromatography retention time. J. Chem. Inf. Model. 63, 1906–1913 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Domingo-Almenara, X. et al. The METLIN small molecule dataset for machine learning-based retention time prediction. Nat. Commun. 10, 5811 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Datta, R., Das, D. & Das, S. Efficient lipophilicity prediction of molecules employing deep-learning models. Chemometr. Intell. Lab. Syst. 213, 104309 (2021).

  • Prasad, S. & Brooks, B. R. A deep learning approach for the blind log P prediction in SAMPL6 challenge. J. Comput. Aided Mol. Des. 34, 535–542 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heijman, J., Voigt, N., Carlsson, L. G. & Dobrev, D. Cardiac safety assays. Curr. Opin. Pharmacol. 15, 16–21 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ackloo, S. et al. CACHE (Critical Assessment of Computational Hit-finding Experiments): a public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding. Nat. Rev. Chem. 6, 287–295 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swanson, K. et al. ADMET-AI: a machine learning ADMET platform for evaluation of large-scale chemical libraries. Zenodo https://doi.org/10.5281/zenodo.10372930 (2023).

  • Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Huang, R. et al. Tox21Challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to environmental chemicals and drugs. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2015.00085 (2016).

  • Tingle, B. I. et al. ZINC-22—a free multi-billion-scale database of tangible compounds for ligand discovery. J. Chem. Inf. Model. 63, 1166–1176 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).

    CAS 

    Google Scholar 

  • Frye, L., Bhat, S., Akinsanya, K. & Abel, R. From computer-aided drug discovery to computer-driven drug discovery. Drug Discov. Today Technol. 39, 111–117 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zeng, W., Guo, L., Xu, S., Chen, J. & Zhou, J. High-throughput screening technology in industrial biotechnology. Trends Biotechnol. 38, 888–906 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sarkar, N. & Stokes, J. M. Practical applications of machine learning for anti-infective drug discovery. Med. Chem. Rev. 14, 345–375 (2023).

  • Arnold, A., Alexander, J., Liu, G. & Stokes, J. M. Applications of machine learning in microbial natural product drug discovery. Expert Opin. Drug Discov. 18, 1259–1272 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Mullowney, M. W. et al. Artificial intelligence for natural product drug discovery. Nat. Rev. Drug Discov. 22, 895–916 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ekins, S. et al. Exploiting machine learning for end-to-end drug discovery and development. Nat. Mater. 18, 435–441 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Grisoni, F. et al. Designing anticancer peptides by constructive machine learning. ChemMedChem 13, 1300–1302 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, J., Cheong, H. H. & Siu, S. W. I. xDeep-AcPEP: deep learning method for anticancer peptide activity prediction based on convolutional neural network and multitask learning. J. Chem. Inf. Model. 61, 3789–3803 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Walker, A. S. & Clardy, J. A machine learning bioinformatics method to predict biological activity from biosynthetic gene clusters. J. Chem. Inf. Model. 61, 2560–2571 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heyndrickx, W. et al. MELLODDY: cross-pharma federated learning at unprecedented scale unlocks benefits in QSAR without compromising proprietary information. J. Chem. Inf. Model. 64, 2331–2344 (2023).

  • Wellawatte, G. P., Gandhi, H. A., Seshadri, A. & White, A. D. A perspective on explanations of molecular prediction models. J. Chem. Theory Comput. 19, 2149–2160 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cichońska, A. et al. Crowdsourced mapping of unexplored target space of kinase inhibitors. Nat. Commun. 12, 3307 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ketkar, N. in Deep Learning with Python 97–111 (Apress, 2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *