Machine learning-based prediction of drug response in ischemia reperfusion animal model

Machine Learning


  • Prasad, K. & Lee, P. Suppression of hypercholesterolemic atherosclerosis by pentoxifylline and its mechanism. Atherosclerosis 192(2), 313–322. https://doi.org/10.1016/j.atherosclerosis.2006.07.034 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, S. S. et al. 2024 Heart disease and stroke statistics: A report of US and global data from the American heart association. Circulation 149, e347–e913. https://doi.org/10.1161/CIR.0000000000001209 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carbonell, T. & Gomes, A. V. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 36, 101607. https://doi.org/10.1016/j.redox.2020.101607 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, M. et al. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 9, 12. https://doi.org/10.1038/s41392-023-01688-x (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. et al. The pathological mechanisms and potential therapeutic drugs for myocardial ischemia reperfusion injury. Phytomed.: Int. J. Phytother Phytopharmacol. 129, 155649. https://doi.org/10.1016/j.phymed.2024.155649 (2024).

    Article 
    CAS 

    Google Scholar 

  • Toldo, S. et al. The NLRP3 inflammasome inhibitor, OLT1177 (dapansutrile), reduces infarct size and preserves contractile function after ischemia reperfusion injury in the mouse. J. Cardiovasc. Pharmacol. 73, 215–222. https://doi.org/10.1097/FJC.0000000000000658 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Francisco, J. & Del Re, D. P. Inflammation in myocardial ischemia/reperfusion injury: underlying mechanisms and therapeutic potential. Antioxidants (Basel, Switzerland) 12, 1944. https://doi.org/10.3390/antiox12111944 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goncharov, R. G. & Sharapov, M. G. Mol. Biol. 57, 1150–1174. https://doi.org/10.1134/S0026893323060067 (2023).

    Article 
    CAS 

    Google Scholar 

  • McKinsey, T. A. et al. Emerging epigenetic therapies of cardiac fibrosis and remodelling in heart failure: from basic mechanisms to early clinical development. Cardiovasc. Res. 118, 3482–3498. https://doi.org/10.1093/cvr/cvac142 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mansoor, S., Hamid, S., Tuan, T. T., Park, J. E. & Chung, Y. S. Advance computational tools for multiomics data learning. Biotechnol. Adv. 77, 108447. https://doi.org/10.1016/j.biotechadv.2024.108447 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jayawardena, E., Medzikovic, L., Ruffenach, G. & Eghbali, M. Role of miRNA-1 and miRNA-21 in acute myocardial ischemia-reperfusion injury and their potential as therapeutic strategy. Int. J. Mol. Sci. 23, 1512. https://doi.org/10.3390/ijms23031512 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, K. et al. Identification of microRNAs related to myocardial ischemic reperfusion injury. J. Cell. Physiol. 234, 11380–11390. https://doi.org/10.1002/jcp.27795 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, X., Zhu, H., Zhu, S., Hao, M. & Li, Q. Identification of microRNAs related to myocardial ischemic reperfusion injury. J. Cell. Physiol. 234, 11380–11390. https://doi.org/10.1002/jcp.27795 (2019).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury. Gene 543, 15–21. https://doi.org/10.1016/j.gene.2014.04.016 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int. J. Biol. Macromol. 257, 128558. https://doi.org/10.1016/j.ijbiomac.2023.128558 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, Z. et al. Long noncoding RNAs in myocardial ischemia-reperfusion injury. Oxid. Med. Cell. Longev. 2021, 8889123. https://doi.org/10.1155/2021/8889123 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thum, T. et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature 456, 980–984. https://doi.org/10.1038/nature07511 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, J. et al. MicroRNA-22 targeting CBP protects against myocardial ischemia-reperfusion injury through anti-apoptosis in rats. Mol. Biol. Rep. 41, 555–561. https://doi.org/10.1007/s11033-013-2891-x (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seker, U. et al. Regulation of STAT3 and NF-κB signaling pathways by trans-Anethole in testicular ischemia-reperfusion injury and its gonadoprotective effect. Revista internacional de andrologia 22, 57–67. https://doi.org/10.22514/j.androl.2024.015 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Torghabeh, F. D., Javadi, B. & Sahebkar, A. Dietary anethole: a systematic review of its protective effects against metabolic syndrome. J. Diabetes Metab. Disord. 23, 619–631. https://doi.org/10.1007/s40200-023-01322-1 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raposo, A. et al. Anethole in cancer therapy: Mechanisms, synergistic potential, and clinical challenges. Biomed. Pharmacother. Biomed. Pharmacother. 180, 117449. https://doi.org/10.1016/j.biopha.2024.117449 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • González-Espinoza, L. et al. Pentoxifylline decreases serum levels of tumor necrosis factor alpha, interleukin 6 and C-reactive protein in hemodialysis patients: Results of a randomized double-blind, controlled clinical trial. Nephrol., Dialysis, Transpl.: Off. Publ. Eur. Dialysis Transpl. Assoc. Eur. Renal Assoc. 27, 2023–2028. https://doi.org/10.1093/ndt/gfr579 (2012).

    Article 
    CAS 

    Google Scholar 

  • Dhulqarnain, A. O. et al. Pentoxifylline improves the survival of spermatogenic cells via oxidative stress suppression and upregulation of PI3K/AKT pathway in mouse model of testicular torsion-detorsion. Heliyon 7, e06868. https://doi.org/10.1016/j.heliyon.2021.e06868 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baek, H., Sanjay, N., Park, M. & Lee, H. J. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J. Neuroinflamm. 20, 268. https://doi.org/10.1186/s12974-023-02950-3 (2023).

    Article 
    CAS 

    Google Scholar 

  • Speciale, A. et al. Cyanidin-3-O-glucoside counters the response to TNF-alpha of endothelial cells by activating Nrf2 pathway. Mol. Nutr. Food Res. 57, 1979–1987. https://doi.org/10.1002/mnfr.201300102 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aleksova, A. et al. Biomarkers of Importance in Monitoring Heart Condition After Acute Myocardial Infarction. J. Clin. Med. 14(1), 129. https://doi.org/10.3390/jcm14010129 (2025).

    Article 
    CAS 

    Google Scholar 

  • Abbas, N. A. & Kabil, S. L. Pentoxifylline and cilostazol against rat heart injuries induced by doxorubicin. Egypt. J. Basic Clin. Pharmacol. https://doi.org/10.11131/2017/101364 (2017).

    Article 

    Google Scholar 

  • Vasan, R. S. Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation 113(19), 2335–2362 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Li, C., Liu, Z. & Shi, R. A bibliometric analysis of 14,822 researches on myocardial reperfusion injury by machine learning. Int. J. Environ. Res. Public Health 18, 8231. https://doi.org/10.3390/ijerph18158231 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akbar, S., Ullah, M., Raza, A., Zou, Q. & Alghamdi, W. DeepAIPs-Pred: predicting anti-inflammatory peptides using local evolutionary transformation images and structural embedding-based optimal descriptors with Self-Normalized BiTCNs. J. Chem. Inf. Model. 64(24), 9609–9625 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shahid, M. et al. pACP-HybDeep: Predicting anticancer peptides using binary tree growth based transformer and structural feature encoding with deep-hybrid learning. Sci. Rep. 15(1), 565 (2025).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akbar, S. et al. pNPs-CapsNet: predicting neuropeptides using protein language models and FastText encoding-based weighted multi-view feature integration with deep capsule neural network. ACS Omega 10(12), 12403–12416 (2025).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehmood, A., Kaushik, A. C. & Wei, D. Q. DDSBC: A stacking ensemble classifier-based approach for breast cancer drug-pair cell synergy prediction. J. Chem. Inf. Model. 64(16), 6421–6431 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Baczkó, I., Leprán, I. & Papp, J. G. Influence of Anesthetics on the Incidence of Reperfusion-Induced Arrhythmias and Sudden Death in Rats. J. Cardiovasc. Pharmacol. 29(2), 196–201 (1997).

    Article 
    PubMed 

    Google Scholar 

  • Wang, S. et al. Febuxostat pretreatment attenuates myocardial ischemia/reperfusion injury via mitochondrial apoptosis. J. Transl. Med. 13, 209. https://doi.org/10.1186/s12967-015-0578-x (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y., Yin, X., Wijaya, C., Huang, M. H. & McConnell, B. K. Acute myocardial infarction in rats. J. Vis. Exp. 48, 2464 (2011).

    Google Scholar 

  • Pacher, P., Nagayama, T., Mukhopadhyay, P., Bátkai, S. & Kass, D. A. Measurement of cardiac function using pressure-volume conductance catheter technique in mice and rats. Nat. Protoc. 3(9), 1422–1434 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, K. et al. Cardiac hypertrophy working group of the predictive safety testing consortium. Evaluation of cardiac toxicity biomarkers in rats from different laboratories. Toxicol. Pathol. 44(8), 1072–1083. https://doi.org/10.1177/0192623316668276 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y., Tian, Z. & Zhang, Y. Protective effects of [compound] on myocardial injury in rats: Histopathological analysis using H&E staining. J. Cardiovasc. Pharmacol. 65(2), 123–130 (2015).

    Google Scholar 

  • Krenning, G., Zeisberg, E. M. & Kalluri, R. The origin of fibroblasts and mechanism of cardiac fibrosis. J. Cell. Physiol. 225(3), 631–637 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papoutsidakis, N. et al. Early myocardial injury is an integral component of experimental acute liver failure–a study in two porcine models. Arch. Med. Sci.: AMS 7(2), 217 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stelzer, G. et al. GeneCards Version 3: The human gene integrator. Database (Oxford) 2016, baw030. https://doi.org/10.1093/database/baw030 (2016).

    Article 
    CAS 

    Google Scholar 

  • Buraschi, S., Neill, T. & Iozzo, R. V. Decorin is a devouring proteoglycan: Remodeling of intracellular catabolism via autophagy and mitophagy. Matrix Biol.: J. Int. Soc. Matrix Biol. 75–76, 260–270. https://doi.org/10.1016/j.matbio.2017.10.005 (2019).

    Article 
    CAS 

    Google Scholar 

  • Shi, Y. et al. Transcription factor SOX5 promotes the migration and invasion of fibroblast-like synoviocytes in part by regulating MMP-9 expression in collagen-induced arthritis. Front Immunol. 12(9), 749. https://doi.org/10.3389/fimmu.2018.00749.PMID:29706965;PMCID:PMC5906798 (2018).

    Article 

    Google Scholar 

  • Zhang, Y., Zhang, Y., Song, Q., Wang, Y. & Pan, J. The role of Vav3 expression for inflammation and cell death during experimental myocardial infarction. Clinics (Sao Paulo, Brazil) 78, 100273. https://doi.org/10.1016/j.clinsp.2023.100273 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, T. W. et al. Decorin inhibits nucleus pulposus apoptosis by matrix-induced autophagy via the mTOR pathway. J. Orthop. Res.: Off. Publ. Orthop. Res. Soc. 39(8), 1777–1788. https://doi.org/10.1002/jor.24882 (2021).

    Article 
    CAS 

    Google Scholar 

  • Autophagy M. Distinct Roles of Autophagy in the Heart During Ischemia and Reperfusion.

  • Toldo, S. & Abbate, A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 15(4), 203–214 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miranda, K. C. et al. A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6), 1203–1217. https://doi.org/10.1016/j.cell.2006.07.031 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sticht, C., De La Torre, C., Parveen, A. & Gretz, N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS ONE 113(10), e0206239 (2018).

    Article 

    Google Scholar 

  • Mehmood, A., Li, R., Kaushik, A. C. & Wei, D. Q. Comparative analysis of the genomic and expression profiles of ANLN and KDR as prognostic markers in breast cancer. Silico Pharmacol. 13(1), 1–6 (2025).

    Article 

    Google Scholar 

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif) 25, 402–408. https://doi.org/10.1006/meth.2001.1262 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gurvich, V. & Naumova, M. Logical contradictions in the one-way ANOVA and Tukey-Kramer multiple comparisons tests with more than two groups of observations. Symmetry 13(8), 1387. https://doi.org/10.3390/sym13081387 (2021).

    Article 
    ADS 

    Google Scholar 

  • Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McKinney, W. Data structures for statistical computing in python. in Proceedings of the 9th Python in Science Conference 51–56 (2010).

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    MathSciNet 

    Google Scholar 

  • Lemaître, G., Nogueira, F. & Aridas, C. K. Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. J. Mach. Learn. Res. 18(1), 559–563 (2017).

    Google Scholar 

  • Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9(03), 90–95 (2007).

    Article 

    Google Scholar 

  • Seabold, S. & Josef, P. statsmodels: Econometric and statistical modeling with python. in Proceedings of the 9th Python in Science Conference (2010).

  • Chicco, D. & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21, 6. https://doi.org/10.1186/s12864-019-6413-7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chicco, D. & Jurman, G. The Matthews correlation coefficient (MCC) should replace the ROC AUC as the standard metric for assessing binary classification. BioData Mining 16, 4. https://doi.org/10.1186/s13040-023-00322-4 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng, L. et al. Simvastatin relieves myocardial ischemia/reperfusion injury in rats through hedgehog signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 24, 6400–6408. https://doi.org/10.26355/eurrev_202006_21538 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y., Wang, L., Li, J. H., Zhao, H. W. & Zhang, F. Z. Morphine alleviates myocardial ischemia/reperfusion injury in rats by inhibiting TLR4/NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 23, 8616–8624. https://doi.org/10.26355/eurrev_201910_19178 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, J., Jiang, H., Liu, D. & Wang, G. Effects of dexmedetomidine on myocardial ischemia-reperfusion injury through PI3K-Akt-mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 23(15), 6736–6743. https://doi.org/10.26355/eurrev_201908_18565 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, H., Guo, X., Chu, Y. & Lu, S. Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene 545, 149–155. https://doi.org/10.1016/j.gene.2014.04.043 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matboli, M. et al. Anti-inflammatory effect of trans-anethol in a rat model of myocardial ischemia-reperfusion injury. Biomed. Pharmacother. Biomed. Pharmacother. 150, 113070. https://doi.org/10.1016/j.biopha.2022.113070 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khedr, M. et al. Cardioprotective Effect Of Cyanidin-3-O-Glucosidein Ischemic Heart Is Mediated Via Inhibition Of Autophagy. Egypt. J. Chem. 65, 179–186. https://doi.org/10.21608/EJCHEM.2021.95695.4494 (2022).

    Article 

    Google Scholar 

  • Abdullah, M. O., El-Desouky, M. A., Matboly, M. S. & Elhakim, A. Anti-inflammatory influence of trans-anethole on the cardiac regenerative capacity in myocardial ischemia/reperfusion injuries. Egypt. J. Chem. 67, 309–321. https://doi.org/10.21608/EJCHEM.2023.235111.8585 (2024).

    Article 

    Google Scholar 

  • Younis, N. S. & Mohamed, M. E. Anethole’s effects against myocardial infarction: The role of TLR4/NFκB and Nrf2/HO1 pathways. Chem. Biol. Interact. 360, 109947. https://doi.org/10.1016/j.cbi.2022.109947 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C., Zhang, B., Chen, A., Yin, Q. & Wang, H. Trans-anethole attenuates diet-induced nonalcoholic steatohepatitis through suppressing TGF-β-mediated fibrosis. Clin. Res. Hepatol. Gastroenterol. 46, 101833. https://doi.org/10.1016/j.clinre.2021.101833 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, K. Y., Lee, H. S. & Seol, G. H. Anti-inflammatory effects of trans-anethole in a mouse model of chronic obstructive pulmonary disease. Biomed. Pharmacother. Biomed. Pharmacother. 91, 925–930. https://doi.org/10.1016/j.biopha.2017.05.032 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seo, E., Kang, P. & Seol, G. H. Trans-anethole prevents hypertension induced by chronic exposure to both restraint stress and nicotine in rats. Biomed. Pharmacother. Biomed. Pharmacother. 102, 249–253. https://doi.org/10.1016/j.biopha.2018.03.081 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rhee, Y. H., Moon, J. H., Mo, J. H., Pham, T. & Chung, P. S. mTOR and ROS regulation by anethole on adipogenic differentiation in human mesenchymal stem cells. BMC Cell Biol. 19, 12. https://doi.org/10.1186/s12860-018-0163-2 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samadi-Noshahr, Z. et al. trans-Anethole attenuated renal injury and reduced expressions of angiotensin II receptor (AT1R) and TGF-β in streptozotocin-induced diabetic rats. Biochimie 185, 117–127. https://doi.org/10.1016/j.biochi.2021.03.011 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fawzy, M. A., Nasr, G., Ali, F. E. & Fathy, M. Quercetin potentiates the hepatoprotective effect of sildenafil and/or pentoxifylline against intrahepatic cholestasis: Role of Nrf2/ARE, TLR4/NF-κB, and NLRP3/IL-1β signaling pathways. Life Sci. 314, 121343. https://doi.org/10.1016/j.lfs.2022.121343 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elshazly, S. M., Mahmoud, A. A. & Barakat, W. Pentoxifylline abrogates cardiotoxicity induced by the administration of a single high dose or multiple low doses of doxorubicin in rats. Can. J. Physiol. Pharmacol. 94, 1170–1177. https://doi.org/10.1139/cjpp-2016-0115 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saeed, A., Farouk, M. M., Sabri, N. A., Saleh, M. A. & Ahmed, M. A. Effect of pentoxifylline on endothelial dysfunction, oxidative stress and inflammatory markers in STEMI patients. Future Sci. OA 10, FSO967. https://doi.org/10.2144/fsoa-2023-0266 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elseweidy, M. M., Ali, S. I., Shaheen, M. A., Abdelghafour, A. M. & Hammad, S. K. Vanillin and pentoxifylline ameliorate isoproterenol-induced myocardial injury in rats via the Akt/HIF-1α/VEGF signaling pathway. Food Funct. 14, 3067–3082. https://doi.org/10.1039/d2fo03570g (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. Potential role of cyanidin 3-glucoside (C3G) in diabetic cardiomyopathy in diabetic rats: An in vivo approach. Saudi J. Biol. Sci. 25, 500–506. https://doi.org/10.1016/j.sjbs.2016.11.007 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. & Qin, X. CTRP3/AMPK pathway plays a key role in the anti-hypertrophic effects of cyanidin-3-O-glucoside by inhibiting the inflammatory response. Adv. Clin. Exp. Med.: Off. Organ. Wroclaw Med. Univ. 33, 831–841. https://doi.org/10.17219/acem/172546 (2024).

    Article 

    Google Scholar 

  • Škėmienė, K., Jablonskienė, G., Liobikas, J. & Borutaitė, V. Protecting the heart against ischemia/reperfusion-induced necrosis and apoptosis: the effect of anthocyanins. Medicina (Kaunas) 49, 84–88. https://doi.org/10.3390/medicina49020015 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Fushimi, T., Oyama, S., Koizumi, R., Fujii, Y. & Osakabe, N. Impact of cyanidin 3-O-glucoside on rat micro-and systemic circulation, possibly thorough angiogenesis. J. Clin. Biochem. Nutr. 72, 132–138. https://doi.org/10.3164/jcbn.22-50 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Cyanidin-3-O-glucoside attenuates endothelial cell dysfunction by modulating miR-204-5p/SIRT1-mediated inflammation and apoptosis. BioFactors (Oxford, England) 46, 803–812. https://doi.org/10.1002/biof.1660 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Knight, D. R. et al. A novel sodium-hydrogen exchanger isoform-1 inhibitor, zoniporide, reduces ischemic myocardial injury in vitro and in vivo. J. Pharmacol. Exp. Ther. 297, 254–259. https://doi.org/10.1016/S0022-3565(24)29535-5 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schaller, S. et al. TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition. J. Pharmacol. Exp. Ther. 333, 696–706. https://doi.org/10.1124/jpet.110.167486 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hombach, S. & Kretz, M. Non-coding RNAs: Classification, Biology and Functioning. Adv. Exp. Med. Biol. 937, 3–17. https://doi.org/10.1007/978-3-319-42059-2_1 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doi, M. et al. Time-dependent changes of decorin in the infarct zone after experimentally induced myocardial infarction in rats: Comparison with biglycan. Pathol. Res. Pract. 196, 23–33. https://doi.org/10.1016/S0344-0338(00)80018-7 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takemoto, S. et al. Increased expression of dermatopontin mRNA in the infarct zone of experimentally induced myocardial infarction in rats: comparison with decorin and type I collagen mRNAs. Basic Res. Cardiol. 97, 461–468. https://doi.org/10.1007/s00395-002-0371-x (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zimmerman, S. D. et al. Time course of collagen and decorin changes in rat cardiac and skeletal muscle post-MI. Am. J. Physiol. Heart Circul. Physiol. 281, H1816–H1822. https://doi.org/10.1152/ajpheart.2001.281.4.H1816 (2001).

    Article 
    CAS 

    Google Scholar 

  • Jing, L., Hua, X., Yuanna, D., Rukun, Z. & Junjun, M. Exosomal miR-499a-5p inhibits endometrial cancer growth and metastasis via targeting VAV3. Cancer Manag. Res. 12, 13541–13552. https://doi.org/10.2147/CMAR.S283747 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, B. et al. Inhibition of gastric cancer cell growth and invasion through siRNA-mediated knockdown of guanine nucleotide exchange factor Vav3. Tumour Biol.: J. Int. Soc. Oncodevel. Biol. Med. 35, 1481–1488. https://doi.org/10.1007/s13277-013-1204-2 (2014).

    Article 
    CAS 

    Google Scholar 

  • Tsuboi, M. et al. Vav3 is linked to poor prognosis of pancreatic cancers and promotes the motility and invasiveness of pancreatic cancer cells. Pancreatol.: Off. J. Int. Assoc. Pancreatol. (IAP) 16, 905–916. https://doi.org/10.1016/j.pan.2016.07.002 (2016).

    Article 
    CAS 

    Google Scholar 

  • Lai, T. et al. SOX5 controls the sequential generation of distinct corticofugal neuron subtypes. Neuron 57, 232–247. https://doi.org/10.1016/j.neuron.2007.12.023 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, W. et al. Neuroprotective effects of SOX5 against ischemic stroke by regulating VEGF/PI3K/AKT pathway. Gene 767, 145148. https://doi.org/10.1016/j.gene.2020.145148 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matboli, M. et al. Pentoxifylline alleviated cardiac injury via modulating the cardiac expression of lncRNA-00654-miR-133a-SOX5 mRNA in the rat model of ischemia-reperfusion. Biomed. Pharmacother. Biomed. Pharmacother. 124, 109842. https://doi.org/10.1016/j.biopha.2020.109842 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ouyang, C., Huang, L., Ye, X., Ren, M. & Han, Z. Overexpression of miR-1298 attenuates myocardial ischemia-reperfusion injury by targeting PP2A. J. Thromb. Thrombolysis 53, 136–148. https://doi.org/10.1007/s11239-021-02540-1 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardenas-Gonzalez, M. et al. Identification, confirmation, and replication of novel urinary MicroRNA biomarkers in lupus nephritis and diabetic nephropathy. Clin. Chem. 63, 1515–1526. https://doi.org/10.1373/clinchem.2017.274175 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bian, Y. et al. CircHelz activates NLRP3 inflammasome to promote myocardial injury by sponging miR-133a-3p in mouse ischemic heart. J. Mol. Cell. Cardiol. 158, 128–139. https://doi.org/10.1016/j.yjmcc.2021.05.010 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dakhlallah, D. et al. MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart. J. Cardiovasc. Pharmacol. 65, 241–251. https://doi.org/10.1097/FJC.0000000000000183 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • García, R. et al. Circulating levels of miR-133a predict the regression potential of left ventricular hypertrophy after valve replacement surgery in patients with aortic stenosis. J. Am. Heart Assoc. 2, e000211. https://doi.org/10.1161/JAHA.113.000211 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p. Theranostics 8, 5855–5869. https://doi.org/10.7150/thno.27285 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z., Luo, W., Zhong, P., Feng, Y. & Wang, H. lncRNA HAGLR modulates myocardial ischemia-reperfusion injury in mice through regulating miR-133a-3p/MAPK1 axis. Open Med. (Warsaw, Poland) 17, 1299–1307. https://doi.org/10.1515/med-2022-0519 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xiao, Y., Zhao, J., Tuazon, J. P., Borlongan, C. V. & Yu, G. MicroRNA-133a and Myocardial Infarction. Cell Transplant. 28, 831–838. https://doi.org/10.1177/0963689719843806 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mohamed, S. M., Medhat, H., Keshk, S., Matboli, M. & Hassan, M. K. LINC00654–SOX5 mRNA-miRNA-133a compose new RNA panel for colorectal cancer (CRC): A potential diagnostic panel for CRC. Biochem. (Moscow) Suppl. Ser. B: Biomed. Chem. 18, 151–166. https://doi.org/10.1134/S199075082460016X (2024).

    Article 

    Google Scholar 

  • Xu, W. et al. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int. J. Cancer 146, 2901–2912. https://doi.org/10.1002/ijc.32747 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bai, X. et al. Cuproptosis-related lncRNA signature as a prognostic tool and therapeutic target in diffuse large B cell lymphoma. Sci. Rep. 14, 12926. https://doi.org/10.1038/s41598-024-63433-w (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Long non-coding RNAs as prognostic markers in human breast cancer. Oncotarget 7, 20584–20596. https://doi.org/10.18632/oncotarget.7828 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darcy, A. M., Louie, A. K. & Roberts, L. W. Machine learning and the profession of medicine. JAMA 315, 551–552. https://doi.org/10.1001/jama.2015.18421 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mahmoudi, E. et al. Use of electronic medical records in development and validation of risk prediction models of hospital readmission: systematic review. BMJ (Clin. Res. Ed.) 369, m958. https://doi.org/10.1136/bmj.m958 (2020).

    Article 

    Google Scholar 

  • Beam, A. L. & Kohane, I. S. Big Data and Machine Learning in Health Care. JAMA 319, 1317–1318. https://doi.org/10.1001/jama.2017.18391 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Loring, Z., Mehrotra, S. & Piccini, J. P. Machine learning in “big data”: handle with care. Europace : Eur. Pacing, Arrhythmias, Cardiac Electrophysiol.: J. Work. Groups Cardiac Pacing, Arrhythmias, Cardiac Cell. Electrophysiol. Eur. Soc. Cardiol. 21, 1284–1285. https://doi.org/10.1093/europace/euz130 (2019).

    Article 

    Google Scholar 

  • Goldstein, B. A., Navar, A. M. & Carter, R. E. Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. Eur. Heart J. 38, 1805–1814. https://doi.org/10.1093/eurheartj/ehw302 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Hyland, S. L. et al. Early prediction of circulatory failure in the intensive care unit using machine learning. Nat. Med. 26, 364–373. https://doi.org/10.1038/s41591-020-0789-4 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Than, M. P. et al. Machine learning to predict the likelihood of acute myocardial infarction. Circulation 140, 899–909. https://doi.org/10.1161/CIRCULATIONAHA.119.041980 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sengupta, P. P., Kulkarni, H. & Narula, J. Prediction of abnormal myocardial relaxation from signal processed surface ECG. J. Am. Coll. Cardiol. 71, 1650–1660. https://doi.org/10.1016/j.jacc.2018.02.024 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Vadapalli, S., Abdelhalim, H., Zeeshan, S. & Ahmed, Z. Artificial intelligence and machine learning approaches using gene expression and variant data for personalized medicine. Brief. Bioinform. 23, bba191. https://doi.org/10.1093/bib/bbac191 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rampášek, L., Hidru, D., Smirnov, P., Haibe-Kains, B. & Goldenberg, A. Dr.VAE: improving drug response prediction via modeling of drug perturbation effects. Bioinformatics (Oxford, England) 35, 3743–3751. https://doi.org/10.1093/bioinformatics/btz158 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yamanishi, Y., Pauwels, E. & Kotera, M. Drug side-effect prediction based on the integration of chemical and biological spaces. J. Chem. Inf. Model. 52, 3284–3292. https://doi.org/10.1021/ci2005548 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Venkatesan, K. et al. Prediction of drug response using genomic signatures from the cancer cell line encyclopedia. Clin. Cancer Res. 16(19_Supplement), PR2–PR2. https://doi.org/10.1158/DIAG-10-PR2 (2010).

    Article 

    Google Scholar 

  • Wang, Y., Fang, J. & Chen, S. Inferences of drug responses in cancer cells from cancer genomic features and compound chemical and therapeutic properties. Sci. Rep. 6, 32679. https://doi.org/10.1038/srep32679 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, N. et al. Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput. Biol. 11, e1004498. https://doi.org/10.1371/journal.pcbi.1004498 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costello, J. C. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 32, 1202–1212. https://doi.org/10.1038/nbt.2877 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, H. H., Dai, J. G. & Liang, Y. Clinical drug response prediction by using a Lq penalized network-constrained logistic regression method. Cell. Physiol. Biochem.: Int. J. Exp. Cell. Physiol., Biochem., Pharmacol. 51, 2073–2084. https://doi.org/10.1159/000495826 (2018).

    Article 
    CAS 

    Google Scholar 

  • Samadishadlou, M. et al. Unlocking the potential of microRNAs: machine learning identifies key biomarkers for myocardial infarction diagnosis. Cardiovasc. Diabetol. 22, 247. https://doi.org/10.1186/s12933-023-01957-7 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Machine learning-based integration develops biomarkers initial the crosstalk between inflammation and immune in acute myocardial infarction patients. Front. Cardiovasc. Med. 9, 1059543. https://doi.org/10.3389/fcvm.2022.1059543 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, A. B. et al. Global prevalence and disability-adjusted life years of hypertensive heart disease: A trend analysis from the Global Burden of Disease Study 2019. J. Glob. Health 14, 04172. https://doi.org/10.7189/jogh.14.04172 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y., Li, L., Wang, Z., Zhang, J. & Zhou, Z. Myocardial ischemia-reperfusion injury; molecular mechanisms and prevention. Microvasc. Res. 149, 104565. https://doi.org/10.1016/j.mvr.2023.104565 (2023).

    Article 
    PubMed 

    Google Scholar 



  • Source link