Xie, J. et al. Battery electric vehicles for modern power systems—A comprehensive review on technological evolutions and integration paradigms. Renew. Energy 183, 459–489 (2022).
Liu, Z., Zhang, Q., Huisingh, D. & Wang, Y. Carbon emissions of electric vehicles based on electricity generation mix: A regional assessment of China. Renew. Energy 163, 1217–1233 (2021).
Wang, Z., Zhang, X., Sun, Y. & Liu, W. A comprehensive overview of hybrid electric vehicles. Appl. Energy 269, 115054 (2020).
Zhang, X., Sahinoglu, Z., Wada, T., Hara, S. & Sakurai, J. Recent progress on lithium ion battery performance degradation analysis and state estimation technologies: A review. J. Energy Storage 28, 101230 (2020).
Chu, S., Majumdar, A., Pan, J., Chiang, Y. M. & Wu, Z. Why are commercial lithium ion batteries unstable? An overview of stability issues, consequences, and remedies. J. Power Sources 493, 229562 (2021).
Jiang, J. & Dahn, J. R. Effects of particle size, electronic conductivity and amount of conductive carbon on performance of LiFePO4 cathodes. Electrochim. Acta 331, 135409 (2020).
Zubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: State of the art and critical review of modelling approaches. Renew. Sustain. Energy Rev. 129, 109918 (2021).
Yang, X. G., Leng, F., Zhang, G., Ge, S. & Wang, C. Y. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from lithium plating to the solid electrolyte interphase growth. Electrochim. Acta 358, 136843 (2021).
Zheng, H., Sun, Q., Liu, K., Song, X. & Battaglia, V. S. Correlation between dissolution behavior and thermal stability of charged cathode materials in lithium ion batteries. J. Power Sources 448, 227433 (2020).
Li, J. et al. Managing lithium-ion battery safety—A review of fundamentals, solutions and future directions. Renew. Energy 183, 19–45 (2022).
Selvaraj, V. & Vairavasundaram, I. A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles. J. Energy Storage 72, 108777 (2023).
Google Scholar
Vedhanayaki, S. & Indragandhi, V. A Bayesian optimized deep learning approach for accurate state of charge estimation of lithium ion batteries used for electric vehicle application. IEEE Access 12, 43308–43327 (2024).
Google Scholar
Shen, J., Dusmez, S. & Khaligh, A. Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications. IEEE Trans. Ind. Inf. 10(4), 2112–2121 (2015).
Google Scholar
Xiong, R., Cao, J., Yu, Q., He, H. & Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 6, 1832–1843 (2018).
Google Scholar
Zhang, C. et al. Challenges and methodologies on high-accuracy lithium-ion battery SOC estimation for electric vehicles: A comprehensive review. Energy Rep. 7, 4413–4429 (2021).
Li, J., Barillas, J. K., Guenther, C. & Danzer, M. A. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles. J. Power Sources 230, 244–250 (2013).
Google Scholar
Waag, W., Fleischer, C. & Sauer, D. U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014).
Google Scholar
Bruen, T. & Marco, J. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J. Power Sources 310, 91–101 (2016).
Google Scholar
Goutam, S., Timmermans, J. M., Omar, N., Van Mierlo, J. & Van den Bossche, P. Comparative study of surface charge estimation methods for lithium ion batteries. Int. J. Energy Res. 39(14), 1878–1895 (2015).
Zhou, L., Pan, R., Xi, Y. & Chen, Z. Lithium-ion battery modeling and state of charge estimation approaches: A review. Comput. Ind. Eng. 149, 106882 (2020).
Hannan, M. A., Lipu, M. S. H., Hussain, A. & Saad, M. H. M. Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm. IEEE Access 8, 50107–50115 (2020).
Hu, X. et al. Data-driven methodologies for battery state of health and state of function assessment—A review. Renew. Sustain. Energy Rev. 143, 110898 (2021).
Hannan, M. A. et al. Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model. Sci. Rep. 11(1), 19541 (2021).
Google Scholar
Chandran, V. et al. State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Electr. Vehicle J. 12(1), 38 (2021).
Google Scholar
Li, C., Xiao, F. & Fan, Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit. Energies 12(9), 1592 (2019).
Google Scholar
How, D. N. et al. SOC estimation using deep bidirectional gated recurrent units with tree parzen estimator hyperparameter optimization. IEEE Trans. Ind. Appl. 58(5), 6629–6638 (2022).
Google Scholar
Caliwag, A., Muh, K. L., Kang, S. H., Park, J., & Lim, W. (2020, February). Design of modular battery management system with point-to-point SoC estimation algorithm. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 701–704). IEEE.
Dubey, A., Zaidi, A., & Kulshreshtha, A. (2022). State-of-charge estimation algorithm for Li-ion batteries using long short-term memory network with Bayesian optimization. In 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS) (pp. 68–73). IEEE.
Lipu, M. S. H. et al. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm. IEEE Trans. Ind. Appl. 55(4), 4225–4234 (2019).
Google Scholar
Zhao, X., Qian, X., Xuan, D. & Jung, S. State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification. J. Energy Storage 56, 105796 (2022).
Google Scholar
Jumah, S., Elezab, A., Zayed, O., Ahmed, R., Narimani, M., & Emadi, A. (2022). State of charge estimation for ev batteries using support vector regression. in 2022 IEEE Transportation Electrification Conference & Expo (ITEC) (pp. 964–969). IEEE.
Ismail, M., Dlyma, R., Elrakaybi, A., Ahmed, R., & Habibi, S. (2017). Battery state of charge estimation using an Artificial Neural Network. In 2017 IEEE transportation electrification conference and expo (ITEC) (pp. 342–349). IEEE.
Cui, S., Wang, Z., Pu, J., Ma, Y. & Ouyang, M. Estimation of state of charge of lithium-ion rechargeable batteries based on support vector machine. Int. J. Hydrogen Energy 37(22), 17209–17216 (2012).
Google Scholar
Chaoui, H. & Ibe-Ekeocha, C. C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans. Veh. Technol. 66(12), 10773–10783 (2017).
Liu, J., Saxena, S., Goebel, K., Saha, B. & Wang, W. 2010. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In Annual conference of the prognostics and health management society (pp. 1–10).
Hannan, M. A. et al. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 277, 124110 (2020).
Google Scholar
Elmi S, Tan KL (2021) DeepFEC: Energy consumption prediction under real-world driving conditions for smart cities. In: The web conference 2021—Proceedings of the world wide web conference, WWW 2021, ACM, New York, NY, USA, 2021, pp 1880–1890
Yi, Z. & Bauer, P. H. Effects of environmental factors on electric vehicle energy consumption: A sensitivity analysis. IET Electr. Syst. Transp. 7(1), 3–13 (2017).
Google Scholar
Liu, N., Zhang, M., Zheng, C. & Lu, B. Ensemble learning for lithium-ion battery state of health prediction. Appl. Energy 279, 115673 (2020).
Liu, D., Zhou, L., Pan, R., Chen, Z. & Bie, Z. Lithium-ion battery state-of-health online estimation based on multi-scale relevance vector machine. Appl. Energy 306, 118174 (2021).
Yan, J., Liu, C., Han, X., Ji, B. & Sun, H. Lithium-ion battery health prognosis using brown exponential smoothing model-an experimental study. IEEE Access 8, 36367–36377 (2020).
Cristianini, N. and Shawe-Taylor, J., An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000. Retrieved from https://www.cs.ox.ac.uk/activities/ieg/e-library/sources/online/cristianini1/index.html.
Lei, X. et al. Review of statistical and mathematical models for lithium-ion battery health monitoring and degradation prediction. J. Power Sources 481, 226893 (2020).
Jaguemont, J., Boulon, L. & Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 281, 116099 (2021).
Liu, K., Li, Y., Hu, X. & Lucu, M. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J. Power Sources 479, 228736 (2020).
Li, Z., Outbib, R., Giurgea, S., Hissel, D. & Gao, B. 2021. An Adaptive Machine Learning Method for Li-Ion Battery State of Charge Estimation. IEEE Transactions on Transportation Electrification.
Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning. MIT Press, 2016. Retrieved from https://www.deeplearningbook.org/.
Liu, K., Li, Y., Hu, X., Lucu, M. & Widanage, W. D. Gaussian process regression with automatic relevance determination kernel function for uncertainty quantification in lithium-ion battery modelling. Appl. Energy 283, 116335 (2021).
Yan, B., Xu, B., Shi, H. & Zhang, X. Adaptive state of health estimation for lithium-ion batteries based on an improved gaussian process regression model. IEEE Access 8, 87191–87204 (2020).
Rasmussen, C.E. and Williams, C.K.I., Gaussian Processes for Machine Learning. MIT Press, 2006. Retrieved from https://gaussianprocess.org/gpml/chapters/RW.pdf.
Lei, X., Foley, A. M., Crow, M. L., Liu, Y. & Zheng, H. A review of feature selection methods for lithium-ion batteries state of health and critical safety indicators monitoring and prognosis. J. Power Sources 481, 228860 (2021).
Liu, G. et al. Lithium-ion battery health prognosis using brown exponential smoothing model-an experimental study. IEEE Access 9, 26004–26012 (2021).