Enhanced SOC estimation of lithium ion batteries with RealTime data using machine learning algorithms

Machine Learning


  • Xie, J. et al. Battery electric vehicles for modern power systems—A comprehensive review on technological evolutions and integration paradigms. Renew. Energy 183, 459–489 (2022).

    Google Scholar 

  • Liu, Z., Zhang, Q., Huisingh, D. & Wang, Y. Carbon emissions of electric vehicles based on electricity generation mix: A regional assessment of China. Renew. Energy 163, 1217–1233 (2021).

    Google Scholar 

  • Wang, Z., Zhang, X., Sun, Y. & Liu, W. A comprehensive overview of hybrid electric vehicles. Appl. Energy 269, 115054 (2020).

    Google Scholar 

  • Zhang, X., Sahinoglu, Z., Wada, T., Hara, S. & Sakurai, J. Recent progress on lithium ion battery performance degradation analysis and state estimation technologies: A review. J. Energy Storage 28, 101230 (2020).

    Google Scholar 

  • Chu, S., Majumdar, A., Pan, J., Chiang, Y. M. & Wu, Z. Why are commercial lithium ion batteries unstable? An overview of stability issues, consequences, and remedies. J. Power Sources 493, 229562 (2021).

    Google Scholar 

  • Jiang, J. & Dahn, J. R. Effects of particle size, electronic conductivity and amount of conductive carbon on performance of LiFePO4 cathodes. Electrochim. Acta 331, 135409 (2020).

    Google Scholar 

  • Zubi, G., Dufo-López, R., Carvalho, M. & Pasaoglu, G. The lithium-ion battery: State of the art and critical review of modelling approaches. Renew. Sustain. Energy Rev. 129, 109918 (2021).

    Google Scholar 

  • Yang, X. G., Leng, F., Zhang, G., Ge, S. & Wang, C. Y. Modeling of lithium plating induced aging of lithium-ion batteries: Transition from lithium plating to the solid electrolyte interphase growth. Electrochim. Acta 358, 136843 (2021).

    Google Scholar 

  • Zheng, H., Sun, Q., Liu, K., Song, X. & Battaglia, V. S. Correlation between dissolution behavior and thermal stability of charged cathode materials in lithium ion batteries. J. Power Sources 448, 227433 (2020).

    Google Scholar 

  • Li, J. et al. Managing lithium-ion battery safety—A review of fundamentals, solutions and future directions. Renew. Energy 183, 19–45 (2022).

    Google Scholar 

  • Selvaraj, V. & Vairavasundaram, I. A comprehensive review of state of charge estimation in lithium-ion batteries used in electric vehicles. J. Energy Storage 72, 108777 (2023).

    Article 

    Google Scholar 

  • Vedhanayaki, S. & Indragandhi, V. A Bayesian optimized deep learning approach for accurate state of charge estimation of lithium ion batteries used for electric vehicle application. IEEE Access 12, 43308–43327 (2024).

    Article 

    Google Scholar 

  • Shen, J., Dusmez, S. & Khaligh, A. Optimization of sizing and battery cycle life in battery/ultracapacitor hybrid energy storage systems for electric vehicle applications. IEEE Trans. Ind. Inf. 10(4), 2112–2121 (2015).

    Article 

    Google Scholar 

  • Xiong, R., Cao, J., Yu, Q., He, H. & Sun, F. Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 6, 1832–1843 (2018).

    Article 

    Google Scholar 

  • Zhang, C. et al. Challenges and methodologies on high-accuracy lithium-ion battery SOC estimation for electric vehicles: A comprehensive review. Energy Rep. 7, 4413–4429 (2021).

    Google Scholar 

  • Li, J., Barillas, J. K., Guenther, C. & Danzer, M. A. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles. J. Power Sources 230, 244–250 (2013).

    Article 
    CAS 

    Google Scholar 

  • Waag, W., Fleischer, C. & Sauer, D. U. Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles. J. Power Sources 258, 321–339 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bruen, T. & Marco, J. Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J. Power Sources 310, 91–101 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Goutam, S., Timmermans, J. M., Omar, N., Van Mierlo, J. & Van den Bossche, P. Comparative study of surface charge estimation methods for lithium ion batteries. Int. J. Energy Res. 39(14), 1878–1895 (2015).

    Google Scholar 

  • Zhou, L., Pan, R., Xi, Y. & Chen, Z. Lithium-ion battery modeling and state of charge estimation approaches: A review. Comput. Ind. Eng. 149, 106882 (2020).

    Google Scholar 

  • Hannan, M. A., Lipu, M. S. H., Hussain, A. & Saad, M. H. M. Neural network approach for estimating state of charge of lithium-ion battery using backtracking search algorithm. IEEE Access 8, 50107–50115 (2020).

    Google Scholar 

  • Hu, X. et al. Data-driven methodologies for battery state of health and state of function assessment—A review. Renew. Sustain. Energy Rev. 143, 110898 (2021).

    Google Scholar 

  • Hannan, M. A. et al. Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model. Sci. Rep. 11(1), 19541 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chandran, V. et al. State of charge estimation of lithium-ion battery for electric vehicles using machine learning algorithms. World Electr. Vehicle J. 12(1), 38 (2021).

    Article 

    Google Scholar 

  • Li, C., Xiao, F. & Fan, Y. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit. Energies 12(9), 1592 (2019).

    Article 

    Google Scholar 

  • How, D. N. et al. SOC estimation using deep bidirectional gated recurrent units with tree parzen estimator hyperparameter optimization. IEEE Trans. Ind. Appl. 58(5), 6629–6638 (2022).

    Article 

    Google Scholar 

  • Caliwag, A., Muh, K. L., Kang, S. H., Park, J., & Lim, W. (2020, February). Design of modular battery management system with point-to-point SoC estimation algorithm. In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 701–704). IEEE.

  • Dubey, A., Zaidi, A., & Kulshreshtha, A. (2022). State-of-charge estimation algorithm for Li-ion batteries using long short-term memory network with Bayesian optimization. In 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS) (pp. 68–73). IEEE.

  • Lipu, M. S. H. et al. Extreme learning machine model for state-of-charge estimation of lithium-ion battery using gravitational search algorithm. IEEE Trans. Ind. Appl. 55(4), 4225–4234 (2019).

    Article 

    Google Scholar 

  • Zhao, X., Qian, X., Xuan, D. & Jung, S. State of charge estimation of lithium-ion battery based on multi-input extreme learning machine using online model parameter identification. J. Energy Storage 56, 105796 (2022).

    Article 

    Google Scholar 

  • Jumah, S., Elezab, A., Zayed, O., Ahmed, R., Narimani, M., & Emadi, A. (2022). State of charge estimation for ev batteries using support vector regression. in 2022 IEEE Transportation Electrification Conference & Expo (ITEC) (pp. 964–969). IEEE.

  • Ismail, M., Dlyma, R., Elrakaybi, A., Ahmed, R., & Habibi, S. (2017). Battery state of charge estimation using an Artificial Neural Network. In 2017 IEEE transportation electrification conference and expo (ITEC) (pp. 342–349). IEEE.

  • Cui, S., Wang, Z., Pu, J., Ma, Y. & Ouyang, M. Estimation of state of charge of lithium-ion rechargeable batteries based on support vector machine. Int. J. Hydrogen Energy 37(22), 17209–17216 (2012).

    ADS 

    Google Scholar 

  • Chaoui, H. & Ibe-Ekeocha, C. C. State of charge and state of health estimation for lithium batteries using recurrent neural networks. IEEE Trans. Veh. Technol. 66(12), 10773–10783 (2017).

    Google Scholar 

  • Liu, J., Saxena, S., Goebel, K., Saha, B. & Wang, W. 2010. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries. In Annual conference of the prognostics and health management society (pp. 1–10).

  • Hannan, M. A. et al. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 277, 124110 (2020).

    Article 

    Google Scholar 

  • Elmi S, Tan KL (2021) DeepFEC: Energy consumption prediction under real-world driving conditions for smart cities. In: The web conference 2021—Proceedings of the world wide web conference, WWW 2021, ACM, New York, NY, USA, 2021, pp 1880–1890

  • Yi, Z. & Bauer, P. H. Effects of environmental factors on electric vehicle energy consumption: A sensitivity analysis. IET Electr. Syst. Transp. 7(1), 3–13 (2017).

    Article 

    Google Scholar 

  • Liu, N., Zhang, M., Zheng, C. & Lu, B. Ensemble learning for lithium-ion battery state of health prediction. Appl. Energy 279, 115673 (2020).

    Google Scholar 

  • Liu, D., Zhou, L., Pan, R., Chen, Z. & Bie, Z. Lithium-ion battery state-of-health online estimation based on multi-scale relevance vector machine. Appl. Energy 306, 118174 (2021).

    Google Scholar 

  • Yan, J., Liu, C., Han, X., Ji, B. & Sun, H. Lithium-ion battery health prognosis using brown exponential smoothing model-an experimental study. IEEE Access 8, 36367–36377 (2020).

    Google Scholar 

  • Cristianini, N. and Shawe-Taylor, J., An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, 2000. Retrieved from https://www.cs.ox.ac.uk/activities/ieg/e-library/sources/online/cristianini1/index.html.

  • Lei, X. et al. Review of statistical and mathematical models for lithium-ion battery health monitoring and degradation prediction. J. Power Sources 481, 226893 (2020).

    Google Scholar 

  • Jaguemont, J., Boulon, L. & Dubé, Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl. Energy 281, 116099 (2021).

    Google Scholar 

  • Liu, K., Li, Y., Hu, X. & Lucu, M. Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter. J. Power Sources 479, 228736 (2020).

    Google Scholar 

  • Li, Z., Outbib, R., Giurgea, S., Hissel, D. & Gao, B. 2021. An Adaptive Machine Learning Method for Li-Ion Battery State of Charge Estimation. IEEE Transactions on Transportation Electrification.

  • Goodfellow, I., Bengio, Y. and Courville, A., Deep Learning. MIT Press, 2016. Retrieved from https://www.deeplearningbook.org/.

  • Liu, K., Li, Y., Hu, X., Lucu, M. & Widanage, W. D. Gaussian process regression with automatic relevance determination kernel function for uncertainty quantification in lithium-ion battery modelling. Appl. Energy 283, 116335 (2021).

    Google Scholar 

  • Yan, B., Xu, B., Shi, H. & Zhang, X. Adaptive state of health estimation for lithium-ion batteries based on an improved gaussian process regression model. IEEE Access 8, 87191–87204 (2020).

    Google Scholar 

  • Rasmussen, C.E. and Williams, C.K.I., Gaussian Processes for Machine Learning. MIT Press, 2006. Retrieved from https://gaussianprocess.org/gpml/chapters/RW.pdf.

  • Lei, X., Foley, A. M., Crow, M. L., Liu, Y. & Zheng, H. A review of feature selection methods for lithium-ion batteries state of health and critical safety indicators monitoring and prognosis. J. Power Sources 481, 228860 (2021).

    Google Scholar 

  • Liu, G. et al. Lithium-ion battery health prognosis using brown exponential smoothing model-an experimental study. IEEE Access 9, 26004–26012 (2021).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *