Dimensions underlying the representational alignment of deep neural networks with humans

Machine Learning


  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1106–1114 (2012).

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

  • Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012).

    Article 

    Google Scholar 

  • Amodei, D. et al. Deep Speech 2: end-to-end speech recognition in English and Mandarin. Proc. Mach. Learn. Res. 48, 173–182 (2016).

    Google Scholar 

  • Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).

    Article 

    Google Scholar 

  • Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 575, 350–354 (2019).

    Article 

    Google Scholar 

  • Khaligh-Razavi, S.-M. & Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain it cortical representation. PLoS Comput. Biol. 10, e1003915 (2014).

    Article 

    Google Scholar 

  • Yamins, D. L. K. et al. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Proc. Natl Acad. Sci. USA 111, 8619–8624 (2014).

    Article 

    Google Scholar 

  • Güçlü, U. & van Gerven, M. A. J. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35, 10005–10014 (2015).

    Article 

    Google Scholar 

  • Rajalingham, R., Schmidt, K. & DiCarlo, J. J. Comparison of object recognition behavior in human and monkey. J. Neurosci. 35, 12127–12136 (2015).

    Article 

    Google Scholar 

  • Kubilius, J., Bracci, S. & Op de Beeck, H. P. Deep neural networks as a computational model for human shape sensitivity. PLoS Comput. Biol. 12, e1004896 (2016).

    Article 

    Google Scholar 

  • Cichy, R. M. & Kaiser, D. Deep neural networks as scientific models. Trends Cogn. Sci. 23, 305–317 (2019).

    Article 

    Google Scholar 

  • Lindsay, G. W. Convolutional neural networks as a model of the visual system: past, present, and future. J. Cogn. Neurosci. 33, 2017–2031 (2021).

    Article 

    Google Scholar 

  • Kanwisher, N., Khosla, M. & Dobs, K. Using artificial neural networks to ask ‘why’ questions of minds and brains. Trends Neurosci. 46, 240–254 (2023).

    Article 

    Google Scholar 

  • Doerig, A. et al. The neuroconnectionist research programme. Nat. Rev. Neurosci. 24, 431–450 (2023).

  • Rajalingham, R. et al. Large-scale, high-resolution comparison of the core visual object recognition behavior of humans, monkeys, and state-of-the-art deep artificial neural networks. J. Neurosci. 38, 7255–7269 (2018).

    Article 

    Google Scholar 

  • Geirhos, R. et al. Generalisation in humans and deep neural networks. Adv. Neural Inf. Process. Syst. 31, 7549–7561 (2018).

    Google Scholar 

  • Rosenfeld, A., Zemel, R. & Tsotsos, J. K. The elephant in the room. Preprint at https://arxiv.org/abs/1808.03305 (2018).

  • Beery, S., Van Horn, G. & Perona, P. Recognition in terra incognita. In Proc. European Conference on Computer Vision 456–473 (Springer, 2018).

  • Szegedy, C. et al. Intriguing properties of neural networks. Preprint at https://arxiv.org/abs/1312.6199 (2013).

  • Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis-connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 4 (2008).

  • Attarian, M., Roads, B. D. & Mozer, M. C. Transforming neural network visual representations to predict human judgments of similarity. Preprint at https://arxiv.org/abs/2010.06512 (2020).

  • Roads, B. D. & Love, B. C. Learning as the unsupervised alignment of conceptual systems. Nat. Mach. Intell. 2, 76–82 (2020).

    Article 

    Google Scholar 

  • Peterson, J. C., Abbott, J. T. & Griffiths, T. L. Evaluating (and improving) the correspondence between deep neural networks and human representations. Cogn. Sci. 42, 2648–2669 (2018).

    Article 

    Google Scholar 

  • Muttenthaler, L., Dippel, J., Linhardt, L., Vandermeulen, R. A. & Kornblith, S. Human alignment of neural network representations. In Proc. International Conference on Learning Representions (ICLR, 2023).

  • Conwell, C., Prince, J. S., Kay, K. N., Alvarez, G. A. & Konkle, T. A large-scale examination of inductive biases shaping high-level visual representation in brains and machines. Nat. Commun. 15, 9383 (2024).

  • Schrimpf, M. et al. Brain-Score: which artificial neural network for object recognition is most brain-like? Preprint at BioRxiv https://doi.org/10.1101/407007 (2018).

  • Muttenthaler, L. et al. Improving neural network representations using human similarity judgments. Adv. Neural Inf. Process. Syst. 36, 50978–51007 (2023).

  • Wang, A. Y., Kay, K., Naselaris, T., Tarr, M. J. & Wehbe, L. Better models of human high-level visual cortex emerge from natural language supervision with a large and diverse dataset. Nat. Mach. Intell. 5, 1415–1426 (2023).

  • Storrs, K. R., Kietzmann, T. C., Walther, A., Mehrer, J. & Kriegeskorte, N. Diverse deep neural networks all predict human inferior temporal cortex well, after training and fitting. J. Cogn. Neurosci. 33, 2044–2064 (2021).

    Google Scholar 

  • Erhan, D., Bengio, Y., Courville, A. & Vincent, P. Visualizing Higher-Layer Features of a Deep Network Report No. 1341 (Univ. of Montreal, 2009).

  • Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional networks. In Proc. European Conference on Computer Vision 818–833 (Springer, 2014).

  • Zhou, B., Sun, Y., Bau, D. & Torralba, A. Revisiting the importance of individual units in CNNs via ablation. Preprint at https://arxiv.org/abs/1806.02891 (2018).

  • Morcos, A. S., Barrett, David G. T., Rabinowitz, N. C. & Botvinick, M. On the importance of single directions for generalization. Preprint at https://arxiv.org/abs/1803.06959 (2018).

  • Bau, D. et al. Understanding the role of individual units in a deep neural network. Proc. Natl Acad. Sci. USA 117, 30071–30078 (2020).

    Article 

    Google Scholar 

  • Hebart, M. N., Zheng, C. Y., Pereira, F. & Baker, C. I. Revealing the multidimensional mental representations of natural objects underlying human similarity judgements. Nat. Human Behav. 4, 1173–1185 (2020).

    Article 

    Google Scholar 

  • Muttenthaler, L. et al. VICE: variational interpretable concept embeddings. Adv. Neural Inf. Process. Syst. 35, 33661–33675 (2022).

    Google Scholar 

  • Zheng, C. Y., Pereira, F., Baker, C. I. & Hebart, M. N. Revealing interpretable object representations from human behavior. In Proc. International Conferemce on Learning Representations (ICLR, 2019).

  • Hebart, M. N. et al. THINGS-data, a multimodal collection of large-scale datasets for investigating object representations in human brain and behavior. eLife 12, e82580 (2023).

    Article 

    Google Scholar 

  • Hebart, M. N. et al. THINGS: a database of 1,854 object concepts and more than 26,000 naturalistic object images. PLoS ONE 14, e0223792 (2019).

    Article 

    Google Scholar 

  • Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proc. International Conference on Learning Representations (ICLR, 2015).

  • Nonaka, S., Majima, K., Aoki, S. C. & Kamitani, Y. Brain hierarchy score: which deep neural networks are hierarchically brain-like? iScience 24, 103013 (2021).

  • Jozwik, K. M., Kriegeskorte, N., Storrs, K. R. & Mur, M. Deep convolutional neural networks outperform feature-based but not categorical models in explaining object similarity judgments. Front. Psychol. 8, 1726 (2017).

    Article 

    Google Scholar 

  • King, M. L., Groen, I. A., Steel, A., Kravitz, D. J. & Baker, C. I. Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images. NeuroImage 197, 368–382 (2019).

    Article 

    Google Scholar 

  • Kaniuth, P., Mahner, F. P., Perkuhn, J. & Hebart, M. N. A high-throughput approach for the efficient prediction of perceived similarity of natural objects. eLife 14, RP105394 (2025).

  • Deng, J. et al. ImageNet: a large-scale hierarchical image database. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 248–255 (IEEE, 2009).

  • Jain, L., Jamieson, K. G. & Nowak, R. D. Finite sample prediction and recovery bounds for ordinal embedding. Adv. Neural Inf. Process. Syst. 29, 2703–2711 (2016).

  • Hoyer, P. O. Non-negative sparse coding. In Proc. IEEE Workshop on Neural Networks for Signal Processing 557–565 (IEEE, 2002).

  • Murphy, B., Talukdar, P. & Mitchell, T. Learning effective and interpretable semantic models using non-negative sparse embedding. In Proc. International Conference on Computational Linguistics 1933–1950 (COLING, 2012).

  • Fyshe, A., Wehbe, L., Talukdar, P., Murphy, B. & Mitchell, T. A compositional and interpretable semantic space. In Proc. Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 32–41 (ACL, 2015).

  • Muttenthaler, L. & Hebart, M. N. THINGSvision: a Python toolbox for streamlining the extraction of activations from deep neural networks. Front. Neuroinform. 15, 45 (2021).

    Article 

    Google Scholar 

  • Hermann, K., Chen, T. & Kornblith, S. The origins and prevalence of texture bias in convolutional neural networks. Adv. Neural Inf. Process. Syst. 33, 19000–19015 (2020).

  • Singer, J. J. D., Seeliger, K., Kietzmann, T. C. & Hebart, M. N. From photos to sketches—how humans and deep neural networks process objects across different levels of visual abstraction. J. Vis. 22, 4 (2022).

    Article 

    Google Scholar 

  • Geirhos, R. et al. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In Proc. International Conferene on Learning Representations (ICLR, 2019).

  • Selvaraju, R. R. et al. Grad-CAM: visual explanations from deep networks via gradient-based localization. In Proc. IEEE International Conferene on Computer Vision 618–626 (IEEE, 2017).

  • Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through deep visualization. Preprint at https://arxiv.org/abs/1506.06579 (2015).

  • Montavon, G., Samek, W. & Müller, K.-R. Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  • Sauer, A., Schwarz, K. & Geiger, A. StyleGAN-XL: scaling StyleGAN to large diverse datasets. In Proc. SIGGRAPH ’22 Conference 49, 1–10 (ACM, 2022).

  • Sucholutsky, I. et al. Getting aligned on representational alignment. Preprint at https://arxiv.org/abs/2310.13018 (2023).

  • Kornblith, S., Norouzi, M., Lee, H. & Hinton, G. Similarity of neural network representations revisited. Proc. Mach. Learn. Res. 97, 3519–3529 (2019).

    Google Scholar 

  • Mahendran, A. & Vedaldi, A. Understanding deep image representations by inverting them. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 5188–5196 (IEEE, 2015).

  • Bau, D., Zhou, B., Khosla, A., Oliva, A. & Torralba, A. Network dissection: quantifying interpretability of deep visual representations. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 3319–3327 (IEEE, 2017).

  • Nguyen, A., Yosinski, J. & Clune, J. Understanding neural networks via feature visualization: a survey. In Explainable AI: Interpreting, Explaining and Visualizing Deep Learning (eds Samek, W.et al.) 55–76 (Springer, 2019).

  • Geirhos, R., Zimmermann, R. S., Bilodeau, B. L., Brendel, W. & Kim, B. Don’t trust your eyes: on the (un)reliability of feature visualizations. In Proc. International Conference on Machine Learning (ICML, 2024).

  • Geirhos, R. et al. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2, 665–673 (2020).

    Article 

    Google Scholar 

  • Hermann, K. L., Mobahi, H., Fel, T. & Mozer, M. C. On the foundations of shortcut learning. In Proc. International Conference on Learning Representations (ICLR, 2024).

  • DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? Neuron 73, 415–434 (2012).

    Article 

    Google Scholar 

  • Jagadeesh, A. V. & Gardner, J. L. Texture-like representation of objects in human visual cortex. Proc. Natl Acad. Sci. USA 119, e2115302119 (2022).

    Article 

    Google Scholar 

  • Prince, J. S., Alvarez, G. A. & Konkle, T. Contrastive learning explains the emergence and function of visual category-selective regions. Sci. Adv. 10, eadl1776 (2024).

    Article 

    Google Scholar 

  • Kanwisher, N. Functional specificity in the human brain: a window into the functional architecture of the mind. Proc. Natl Acad. Sci. USA 107, 11163–11170 (2010).

    Article 

    Google Scholar 

  • Mur, M. et al. Human object-similarity judgments reflect and transcend the primate-IT object representation. Front. Psychol. 4, 128 (2013).

    Article 

    Google Scholar 

  • Sundaram, S. et al. When does perceptual alignment benefit vision representations? Adv. Neural Inf. Process. Syst. 37, 55314–55341 (2024).

  • Dwivedi, K. & Roig, G. Representation similarity analysis for efficient task taxonomy and transfer learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 12387–12396 (2019).

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).

    Article 
    MathSciNet 

    Google Scholar 

  • Mahner, F. P. florianmahner/object-dimensions. Zenodo https://doi.org/10.5281/zenodo.14731440 (2025).

  • Stoinski, L. M., Perkuhn, J. & Hebart, M. N. THINGSplus: new norms and metadata for the THINGS database of 1854 object concepts and 26,107 natural object images. Behav. Res. 56, 1583–1603 (2024).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *