DeepDive: estimating global biodiversity patterns through time using deep learning

Machine Learning


  • Sepkoski, J. J. A factor analytic description of the phanerozoic marine fossil record. Paleobiology 7, 36–53 (1981).

    Article 

    Google Scholar 

  • Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Ezard, T. H., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Benton, M. J. Exploring macroevolution using modern and fossil data. Proc. R. Soc. B: Biol. Sci. 282, 20150569 (2015).

    Article 

    Google Scholar 

  • Niklas, K. J. Measuring the tempo of plant death and birth. N. Phytol. 207, 254–256 (2015).

    Article 

    Google Scholar 

  • Rabosky, D. L. & Hurlbert, A. H. Species richness at continental scales is dominated by ecological limits. Am. Nat. 185, 572–583 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Harmon, L. J. & Harrison, S. Species diversity is dynamic and unbounded at local and continental scales. Am. Nat. 185, 584–593 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Sepkoski Jr, J. Phanerozoic overview of mass extinction. In Patterns and Processes in the History of Life: Report of the Dahlem Workshop on Patterns and Processes in the History of Life Berlin 1985, June 16–21, 277–295 (Springer, 1986).

  • Benton, M. J. & Emerson, B. C. How did life become so diverse? the dynamics of diversification according to the fossil record and molecular phylogenetics. Palaeontology 50, 23–40 (2007).

    Article 

    Google Scholar 

  • Alroy, J. Geographical, environmental and intrinsic biotic controls on phanerozoic marine diversification. Palaeontology 53, 1211–1235 (2010).

    Article 

    Google Scholar 

  • Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Niklas, K. J., Tiffney, B. H. & Knoll, A. H. Patterns in vascular land plant diversification. Nature 303, 614 – 616 (1983).

    Article 

    Google Scholar 

  • Foote, M., Miller, A., Raup, D. & Stanley, S.Principles of Paleontology (W. H. Freeman, 2007). https://books.google.ch/books?id=8TsDC2OOvbYC

  • Close, R., Benson, R., Saupe, E., Clapham, M. & Butler, R. The spatial structure of phanerozoic marine animal diversity. Science 368, 420–424 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Raja, N. B. et al. Colonial history and global economics distort our understanding of deep-time biodiversity. Nat. Ecol. Evol. 6, 145–154 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Smith, A. B. & McGowan, A. J. The ties linking rock and fossil records and why they are important for palaeobiodiversity studies. Geol. Soc. Lond. Spec. Publ. 358, 1–7 (2011).

    Article 
    ADS 

    Google Scholar 

  • Benson, R., Butler, R., Close, R., Saupe, E. & Rabosky, D. Biodiversity across space and time in the fossil record. Curr. Biol. 31, R1225–R1236 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, A. B. Large–scale heterogeneity of the fossil record: implications for phanerozoic biodiversity studies. Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci. 356, 351–367 (2001).

    Article 
    CAS 

    Google Scholar 

  • Alroy, J. Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Paleontol. Soc. Pap. 16, 55–80 (2010).

    Article 

    Google Scholar 

  • Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Raup, D. Taxonomic diversity estimation using rarefaction. Paleobiology 1, 333–342 (1975).

    Article 

    Google Scholar 

  • Alroy, J. et al. Effects of sampling standardization on estimates of phanerozoic marine diversification. Proc. Natl Acad. Sci. 98, 6261–6266 (2001).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Starrfelt, J. & Liow, L. H. How many dinosaur species were there? fossil bias and true richness estimated using a poisson sampling model. Philos. Trans. R. Soc. B: Biol. Sci. 371, 20150219 (2016).

    Article 

    Google Scholar 

  • Flannery-Sutherland, J. T., Silvestro, D. & Benton, M. J. Global diversity dynamics in the fossil record are regionally heterogeneous. Nat. Commun. 13, 1–17 (2022).

    Article 

    Google Scholar 

  • Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987).

  • Alroy, J. Limits to species richness in terrestrial communities. Ecol. Lett. 21, 1781–1789 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Alroy, J. On four measures of taxonomic richness. Paleobiology 46, 158–175 (2020).

    Article 

    Google Scholar 

  • Close, R., Evers, S., Alroy, J. & Butler, R. How should we estimate diversity in the fossil record? testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).

    Article 

    Google Scholar 

  • Close, R. et al. The apparent exponential radiation of phanerozoic land vertebrates is an artefact of spatial sampling biases. Proc. R. Soc. B 287, 20200372 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Antell, G. T., Benson, R. B. & Saupe, E. E. Spatial standardization of taxon occurrence data—a call to action. Paleobiology https://doi.org/10.1017/pab.2023.36 (2024).

  • Dunne, E. M., Thompson, S. E., Butler, R. J., Rosindell, J. & Close, R. A. Mechanistic neutral models show that sampling biases drive the apparent explosion of early tetrapod diversity. Nat. Ecol. Evol. 7, 1480–1489 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hauffe, T., Pires, M. M., Quental, T. B., Wilke, T. & Silvestro, D. A quantitative framework to infer the effect of traits, diversity and environment on dispersal and extinction rates from fossils. Methods Ecol. Evol. 13, 1201–1213 (2022).

    Article 

    Google Scholar 

  • Cermeño, P. et al. Post-extinction recovery of the phanerozoic oceans and biodiversity hotspots. Nature 607, 507–511 (2022).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagen, O. et al. gen3sis: a general engine for eco-evolutionary simulations of the processes that shape earth’s biodiversity. PLoS Biol. 19, e3001340 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hagen, O., Skeels, A., Onstein, R. E., Jetz, W. & Pellissier, L. Earth history events shaped the evolution of uneven biodiversity across tropical moist forests. Proc. Natl Acad. Sci. 118, e2026347118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vilhena, D. A. & Smith, A. B. Spatial bias in the marine fossil record. PLoS One 8, e74470 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raup, D. M. Taxonomic diversity during the phanerozoic: the increase in the number of marine species since the paleozoic may be more apparent than real. Science 177, 1065–1071 (1972).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Raup, D. M. Species diversity in the phanerozoic: a tabulation. Paleobiology 2, 279–288 (1976).

    Article 

    Google Scholar 

  • Foote, M., Crampton, J. S., Beu, A. G. & Nelson, C. S. Aragonite bias, and lack of bias, in the fossil record: lithological, environmental, and ecological controls. Paleobiology 41, 245–265 (2015).

    Article 

    Google Scholar 

  • Silvestro, D., Salamin, N. & Schnitzler, J. Pyrate: a new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).

    Article 

    Google Scholar 

  • Cantalapiedra, J. L. et al. The rise and fall of proboscidean ecological diversity. Nat. Ecol. Evol. 5, 1266–1272 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).

    Article 
    ADS 

    Google Scholar 

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gers, F., Schmidhuber, J. & Cummins, F. Learning to forget: continual prediction with lstm. Neural Comput. 12, 2451–2471 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gal, Y. & Ghahramani, Z. A theoretically grounded application of dropout in recurrent neural networks. Adv. Neural Inform. Process. Syst. 29, 1–9 (2016).

  • Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning 48, 1050–1059 (PMLR, 2016).

  • Silvestro, D. & Andermann, T. Prior choice affects ability of bayesian neural networks to identify unknowns. arXiv preprint arXiv:2005.04987 (2020).

  • Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628–642 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Dunne, E. M., Farnsworth, A., Greene, S. E., Lunt, D. J. & Butler, R. J. Climatic drivers of latitudinal variation in late triassic tetrapod diversity. Palaeontology 64, 101–117 (2021).

    Article 

    Google Scholar 

  • De Celis, A., Narváez, I., Arcucci, A. & Ortega, F. Lagerstätte effect drives notosuchian palaeodiversity (crocodyliformes, notosuchia). Historical Biol. 33, 3031–3040 (2021).

    Article 

    Google Scholar 

  • Cleary, T. J., Benson, R. B., Holroyd, P. A. & Barrett, P. M. Tracing the patterns of non-marine turtle richness from the triassic to the palaeogene: from origin to global spread. Palaeontology 63, 753–774 (2020).

    Article 

    Google Scholar 

  • Silvestro, D. et al. Fossil data support a pre-Cretaceous origin of flowering plants. Nat. Ecol. Evol. 5, 449–457 (2021).

  • Leuenberger, C. & Wegmann, D. Bayesian computation and model selection without likelihoods. Genetics 184, 243–252 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marjoram, P., Molitor, J., Plagnol, V. & Tavaré, S. Markov chain monte carlo without likelihoods. Proc. Natl Acad. Sci. 100, 15324–15328 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from dna sequence data. Genetics 145, 505–518 (1997).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT, 2016).

  • Edler, D., Guedes, T., Zizka, A., Rosvall, M. & Antonelli, A. Infomap Bioregions: interactive mapping of biogeographical regions from species distributions. Syst. Biol. 66, 197–204 (2016).

    PubMed Central 

    Google Scholar 

  • Vilhena, D. A. & Antonelli, A. A network approach for identifying and delimiting biogeographical regions. Nat. Commun. 6, 6848 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hoyal Cuthill, J. F., Guttenberg, N. & Budd, G. E. Impacts of speciation and extinction measured by an evolutionary decay clock. Nature 588, 636–641 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Foster, W. J. et al. How predictable are mass extinction events? R. Soc. Open Sci. 10, 221507 (2023).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Foster, W. J. et al. Machine learning identifies ecological selectivity patterns across the end-permian mass extinction. Paleobiology 48, 357–371 (2022).

    Article 

    Google Scholar 

  • Tietje, M. & Rödel, M.-O. Evaluating the predicted extinction risk of living amphibian species with the fossil record. Ecol. Lett. 21, 1135–1142 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Finnegan, S. et al. Paleontological baselines for evaluating extinction risk in the modern oceans. Science 348, 567–570 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Raja, N. B. et al. Morphological traits of reef corals predict extinction risk but not conservation status. Glob. Ecol. Biogeogr. 30, 1597–1608 (2021).

    Article 

    Google Scholar 

  • Fricke, E. C. et al. Collapse of terrestrial mammal food webs since the late pleistocene. Science 377, 1008–1011 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • He, Y. et al. Challenges and opportunities in applying AI to evolutionary morphology. ecoevorXiv preprint DOI:10.32942/x2s315 (2024).

  • Tetard, M. et al. A new automated radiolarian image acquisition, stacking, processing, segmentation, and identification workflow. Clim. Discuss. 2020, 1–23 (2020).

    Google Scholar 

  • Edie, S. M., Collins, K. S. & Jablonski, D. High-throughput micro-ct scanning and deep learning segmentation workflow for analyses of shelly invertebrates and their fossils: examples from marine bivalvia. Front. Ecol. Evol. 11, 1127756 (2023).

    Article 

    Google Scholar 

  • Andermann, T., Strömberg, C. A., Antonelli, A. & Silvestro, D. The origin and evolution of open habitats in North America inferred by Bayesian deep learning models. Nat. Commun. 13, 4833 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kane, M. J., Price, N., Scotch, M. & Rabinowitz, P. Comparison of Arima and random forest time series models for prediction of avian influenza h5n1 outbreaks. BMC Bioinforma. 15, 1–9 (2014).

    Article 

    Google Scholar 

  • Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 149 (2018).

    Article 

    Google Scholar 

  • Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).

    Article 

    Google Scholar 

  • Silvestro, D. et al. A 450 million years long latitudinal gradient in age-dependent extinction. Ecol. Lett. 23, 439–446 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Chan, J. et al. A likelihood-free inference framework for population genetic data using exchangeable neural networks. Adv. Neural Inform. Process. Syst. 31, 8594–8605 (2018).

  • Schrider, D. R. & Kern, A. D. Supervised machine learning for population genetics: a new paradigm. Trends Genet. 34, 301–312 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lajaaiti, I., Lambert, S., Voznica, J., Morlon, H. & Hartig, F. A comparison of deep learning architectures for inferring parameters of diversification models from extant phylogenies. Preprint at bioRxiv https://doi.org/10.1101/2023.03.03.530992 (2023).

  • Chen, Z.-Q. & Benton, M. J. The timing and pattern of biotic recovery following the end-permian mass extinction. Nat. Geosci. 5, 375–383 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in earth history. Proc. Natl Acad. Sci. 113, E6325–E6334 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sepkoski Jr, J. J. A compendium of fossil marine animal genera. Bull. Am. Paleontol. 363, 1–560 (2002).

    Google Scholar 

  • Dunhill, A. M., Foster, W. J., Sciberras, J. & Twitchett, R. J. Impact of the late triassic mass extinction on functional diversity and composition of marine ecosystems. Palaeontology 61, 133–148 (2018).

    Article 

    Google Scholar 

  • Raup, D. M. & Sepkoski Jr, J. J. Mass extinctions in the marine fossil record. Science 215, 1501–1503 (1982).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Muscente, A. et al. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proc. Natl Acad. Sci. 115, 5217–5222 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Žliobaitė, I. & Fortelius, M. On calibrating the completometer for the mammalian fossil record. Paleobiology 48, 1–11 (2022).

    Article 

    Google Scholar 

  • Harzhauser, M. et al. Biogeographic responses to geodynamics: a key study all around the oligo–miocene tethyan seaway. Zool. Anz.-A J. Comp. Zool. 246, 241–256 (2007).

    Article 

    Google Scholar 

  • Flower, B. P. & Kennett, J. P. The middle miocene climatic transition: East antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 108, 537–555 (1994).

    Article 

    Google Scholar 

  • Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 ma to present. Science 292, 686–693 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westerhold, T. et al. An astronomically dated record of earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Stuart, A. J. Late quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).

    Article 
    ADS 

    Google Scholar 

  • Jukar, A., Lyons, S., Wagner, P. & Uhen, M. Late quaternary extinctions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110137 (2021).

    Article 

    Google Scholar 

  • Fisher, D. C. Paleobiology of pleistocene proboscideans. Annu. Rev. Earth Planet. Sci. 46, 229–260 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kendall, D. G. On the generalized birth-and-death process. Ann. Math. Stat. 19, 1 – 15 (1948).

    Article 
    MathSciNet 

    Google Scholar 

  • Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).

    Article 

    Google Scholar 

  • Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liow, L. H. & Finarelli, J. A. A dynamic global equilibrium in carnivoran diversification over 20 million years. Proc. R. Soc. B: Biol. Sci. 281, 20132312–20132312 (2014).

    Article 

    Google Scholar 

  • Jones, L. A., Dean, C. D., Mannion, P. D., Farnsworth, A. & Allison, P. A. Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients. Proc. R. Soc. B 288, 20202762 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Szandała, T. Review and Comparison of Commonly Used Activation Functions for Deep Neural Networks, 203–224 (Springer Singapore, Singapore, 2021). https://doi.org/10.1007/978-981-15-5495-7_11.

  • Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. arXiv preprint arXiv 1412.6980 (2014).

  • Kocsis, A., Reddin, C., Alroy, J. & Kiessling, W. The r package divdyn for quantifying diversity dynamics using fossil sampling data. Methods Ecol. Evol. 10, 735–743 (2019).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2013).

  • Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B: Biol. Sci. 279, 1300–1309 (2012).

    Article 

    Google Scholar 

  • Song, H. et al. Flat latitudinal diversity gradient caused by the permian–triassic mass extinction. Proc. Natl Acad. Sci. 117, 17578–17583 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Song, H. et al. Data from: flat latitudinal diversity gradient caused by the permian–triassic mass extinction. Dryad https://doi.org/10.5061/dryad.41ns1rn9z (2020).

  • Carrillo, J. D. et al. Disproportionate extinction of South American mammals drove the asymmetry of the great American biotic interchange. Proc. Natl Acad. Sci. 117, 26281–26287 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abadi, M. et al. TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/ (2015).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *