Assessment of depression and anxiety in young and old with a question-based computational language approach

AI and ML Jobs


  • WHO. Mental health. https://www.who.int/health-topics/mental-health#tab=tab_1 (2021).

  • McCracken, L. M., Badinlou, F., Buhrman, M. & Brocki, K. C. Psychological impact of COVID-19 in the Swedish population: depression, anxiety, and insomnia and their associations to risk and vulnerability factors. Eur. Psychiatry 63, e81 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mihalopoulos, C. & Vos, T. Cost–effectiveness of preventive interventions for depressive disorders: an overview. Expert Rev. Pharmacoecon. Outcomes Res. 13, 237–242 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Moreira-Almeida, A., Lotufo Neto, F. & Koenig, H. G. Religiousness and mental health: a review. Rev. Bras. Psiquiatr. 28, 242–250 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Murray, C. J. L. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Eichstaedt, J. C. et al. Facebook language predicts depression in medical records. Proc. Natl Acad. Sci. USA 115, 11203–11208 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greenberg, P. E. et al. The economic burden of depression in the United States: how did it change between 1990 and 2000? J. Clin. Psychiatry 64, 1465–1475 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Kemper, S., Kynette, D. & Norman, S. in Everyday Memory and Aging (eds West, R. L. & Sinnott, J. D.) 138–152 (Springer, 1992).

  • Kjell, O. N. E., Kjell, K., Garcia, D. & Sikström, S. Semantic measures: using natural language processing to measure, differentiate, and describe psychological constructs. Psychol. Methods 24, 92–115 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Statista. Sweden: share of people with depression, by age 2020. https://www.statista.com/statistics/960041/share-of-people-diagnosed-with-depression-in-sweden-by-age/ (2021).

  • Statista. Sweden: share of people with severe anxiety, by age 2020. https://www.statista.com/statistics/961442/share-of-people-with-severe-anxiety-in-sweden-by-age/ (2021).

  • Lenze, E. J. et al. Comorbid anxiety disorders in depressed elderly patients. Am. J. Psychiatry 157, 722–728 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Statista. Share of people diagnosed with depression in Sweden 2022, by age. https://www.statista.com/statistics/961442/share-of-people-with-severe-anxiety-in-sweden-by-age/ (2023).

  • Remes, O., Brayne, C., Van Der Linde, R. & Lafortune, L. A systematic review of reviews on the prevalence of anxiety disorders in adult populations. Brain Behav. 6, e00497 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, Y. et al. Specific and cumulative lifetime stressors in the aetiology of major depression: a longitudinal community-based population study. Epidemiol. Psychiatr. Sci. 31, E3 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tausczik, Y. R. & Pennebaker, J. W. The psychological meaning of words: LIWC and computerized text analysis methods. J. Lang. Soc. Psychol. 29, 24–54 (2010).

    Article 

    Google Scholar 

  • Xia, W. et al. Association between self-reported depression and risk of all-cause mortality and cause-specific mortality. J. Affect. Disord. 299, 353–358 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Agerbo, E., Nordentoft, M. & Mortensen, P. B. Familial, psychiatric, and socioeconomic risk factors for suicide in young people: nested case-control study. BMJ 325, 74 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hawes, M. T., Szenczy, A. K., Klein, D. N., Hajcak, G. & Nelson, B. D. Increases in depression and anxiety symptoms in adolescents and young adults during the COVID-19 pandemic. Psychol. Med. 52, 3222–3230 (2021).

  • Eisenberg, D., Gollust, S. E., Golberstein, E. & Hefner, J. L. Prevalence and correlates of depression, anxiety, and suicidality among university students. Am. J. Orthopsychiatry 77, 534–542 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Trollor, J. N., Anderson, T. M., Sachdev, P. S., Brodaty, H. & Andrews, G. Age shall not weary them: mental health in the middle-aged and the elderly. Aust. NZ J. Psychiatry 41, 581–589 (2007).

    Article 

    Google Scholar 

  • Yalin, N., Young, A. H. in Age of Onset of Mental Disorders (eds de Girolamo, G., McGorry, P. & Sartorius, N.) 111–124 (Springer, 2019).

  • Wu, C., Hsu, L. & Wang, S. Association of depression and diabetes complications and mortality: a population-based cohort study. Epidemiol. Psychiatr. Sci. 29, E96 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davison, K. M. et al. Nutritional factors, physical health and immigrant status are associated with anxiety disorders among middle-aged and older adults: findings from baseline data of the Canadian longitudinal study on aging (CLSA). Int. J. Environ. Res. Public Health 17, 1493 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergdahl, J. & Bergdahl, M. Perceived stress in adults: prevalence and association of depression, anxiety and medication in a Swedish population. Stress Health 18, 235–241 (2002).

    Article 

    Google Scholar 

  • Cattan, M., White, M., Bond, J. & Learmouth, A. Preventing social isolation and loneliness among older people: a systematic review of health promotion interventions. Ageing Soc. 25, 41–67 (2005).

    Article 

    Google Scholar 

  • Gottfries, C. G. Late life depression. Eur. Arch. Psychiatry Clin. Neurosci. 251 (Suppl. 2), II57–II61 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Gottfries, C. G. Is there a difference between elderly and younger patients with regard to the symptomatology and aetiology of depression? Int. Clin. Psychopharmacol. 13, S13–S18 (1998).

    Article 
    PubMed 

    Google Scholar 

  • Johansson, R., Carlbring, P., Heedman, Å., Paxling, B. & Andersson, G. Depression, anxiety and their comorbidity in the Swedish general population: point prevalence and the effect on health-related quality of life. PeerJ 1, e98 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rapp, M. A., Gerstorf, D., Helmchen, H. & Smith, J. Depression predicts mortality in the young old, but not in the oldest old: results from the Berlin Aging Study. Am. J. Geriatr. Psychiatry 16, 844–852 (2008).

    Article 
    PubMed 

    Google Scholar 

  • De Leo, D. Late-life suicide in an aging world. Nat. Aging 2, 7–12 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Ojagbemi, A., Oladeji, B., Abiona, T. & Gureje, O. Suicidal behaviour in old age-results from the Ibadan Study of Ageing. BMC Psychiatry 13, 1–7 (2013).

    Article 

    Google Scholar 

  • Yildirim, H., Işik, K. & Aylaz, R. The effect of anxiety levels of elderly people in quarantine on depression during covid-19 pandemic. Soc. Work Public Health 36, 194–204 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Fischer, L. R., Wei, F., Solberg, L. I., Rush, W. A. & Heinrich, R. L. Treatment of elderly and other adult patients for depression in primary care. J. Am. Geriatr. Soc. 51, 1554–1562 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Gorska-Ciebiada, M., Saryusz-Wolska, M., Ciebiada, M. & Loba, J. Mild cognitive impairment and depressive symptoms in elderly patients with diabetes: prevalence, risk factors, and comorbidity. J. Diabet. Res. 2014, 179648 (2014).

    Article 

    Google Scholar 

  • Nyqvist, F., Forsman, A. K., Giuntoli, G. & Cattan, M. Social capital as a resource for mental well-being in older people: a systematic review. Aging Mental Health 17, 394–410 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Luxton, D. D. in Artificial Intelligence in Behavioral and Mental Health Care (ed. Luxton, D. D.) 1–26 (Academic Press, 2016).

  • Mathers, C. D. & Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3, e442 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazure, C. M. & Maciejewski, P. K. A model of risk for major depression: effects of life stress and cognitive style vary by age. Depress. Anxiety 17, 26–33 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Graham, S. et al. Artificial intelligence for mental health and mental illnesses: an overview. Curr. Psychiatry Rep. 21, 116 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Graham, S. A. & Depp, C. A. Artificial intelligence and risk prediction in geriatric mental health: what happens next? Int. Psychogeriatr. 31, 921–923 (2019).

    Article 

    Google Scholar 

  • Lin, L. Y. et al. Association between social media use and depression among U.S. young adults. Depress. Anxiety 33, 323–331 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindwall, M., Rennemark, M., Halling, A., Berglund, J. & Hassmén, P. Depression and exercise in elderly men and women: findings from the Swedish national study on aging and care. J. Aging Phys. Activity 15, 41–55 (2007).

    Article 

    Google Scholar 

  • Choudhury, M. de, Counts, S. & Horvitz, E. Social media as a measurement tool of depression in populations. In Proceedings of the 5th Annual ACM Web Science Conference 47–56 (ACM, 2013).

  • D’Alfonso, S. et al. Artificial intelligence-assisted online social therapy for youth mental health. Front. Psychol. 8, 796 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Landauer, T. K. & Dumais, S. T. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997).

    Article 

    Google Scholar 

  • Kjell, K., Johnsson, P. & Sikström, S. Freely generated word responses analyzed with artificial intelligence predict self-reported symptoms of depression, anxiety, and worry. Front. Psychol. 12, 602581 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kjell, O. N. E., Daukantaitė, D., Hefferon, K. & Sikström, S. The harmony in life scale complements the satisfaction with life scale: expanding the conceptualization of the cognitive component of subjective well-being. Soc. Indic. Res. 126, 893–919 (2016).

    Article 

    Google Scholar 

  • Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 606–613 (2001).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lovejoy, C. A., Buch, V. & Maruthappu, M. Technology and mental health: the role of artificial intelligence. Eur. Psychiatry 55, 1–3 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Löwe, B., Unützer, J., Callahan, C. M., Perkins, A. J. & Kroenke, K. Monitoring depression treatment outcomes with the Patient Health Questionnaire-9. Med. Care 42, 1194–1201 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Löwe, B. et al. Validation and standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the general population. Med. Care 46, 266–274 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Lu, G. et al. Tough times, extraordinary care: a critical assessment of chatbot-based digital mental healthcare solutions for older persons to fight against pandemics like COVID-19. In Proceedings of Sixth International Congress on Information and Communication Technology 735–743 (Springer, 2022).

  • Chen, I. Y., Szolovits, P. & Ghassemi, M. Can AI help reduce disparities in general medical and mental health care? AMA J. Ethics 21, E167–E179 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Horn, R. L. & Weisz, J. R. Can artificial intelligence improve psychotherapy research and practice? Adm. Policy Ment. Health 47, 852–855 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jha, I. P., Awasthi, R., Kumar, A., Kumar, V. & Sethi, T. Learning the mental health impact of COVID-19 in the United States with explainable artificial intelligence. JMIR Ment. Health 8, e25097 (2021).

  • Sikström S., Kjell O. (in revision). Language Analyzed by Computational Methods Predicts Depression Episodes More Accurately than Rating Scales Alone.

  • Spitzer, R. L., Kroenke, K., Williams, J. B. W. & Löwe, B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch. Intern. Med. 166, 1092–1097 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Diener, E., Emmons, R. A., Larsen, R. J. & Griffin, S. The satisfaction with life scale. J. Pers. Assess. 49, 71–75 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Erickson, K. I., Leckie, R. L. & Weinstein, A. M. Physical activity, fitness, and gray matter volume. Neurobiol. Aging 35 (Suppl. 2), S20–S28 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Oppenheimer, D. M., Meyvis, T. & Davidenko, N. Instructional manipulation checks: detecting satisficing to increase statistical power. J. Exp. Social Psychol. 45, 867–872 (2009).

    Article 

    Google Scholar 

  • O’Riley, A. A. & Fiske, A. Emphasis on autonomy and propensity for suicidal behavior in younger and older adults. Suicide Life-threatening Behav. 42, 394–404 (2012).

    Article 

    Google Scholar 

  • Pearson, S. et al. Depression and insulin resistance: cross-sectional associations in young adults. Diabetes Care 33, 1128–1133 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pennebaker, J. W. Using computer analyses to identify language style and aggressive intent: the secret life of function words. Dyn. Asymmetric Conflict 4, 92–102 (2011).

    Article 

    Google Scholar 

  • Yesavage, J. A. et al. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr. Res. 17, 37–49 (1982).

  • Virgincar, A., Doherty, S. & Siriwardhana, C. The impact of forced migration on the mental health of the elderly: a scoping review. Int. Psychogeriatr. 28, 889–896 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Williams, J. W. et al. Treatment of dysthymia and minor depression in primary care: a randomized controlled trial in older adults. JAMA 284, 1519–1526 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Williamson, V., Stevelink, S. A. M., Greenberg, K. & Greenberg, N. Prevalence of mental health disorders in elderly U.S. military veterans: a meta-analysis and systematic review. Am. J. Geriatr. Psychiatry 26, 534–545 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Horn, J. L. & Cattell, R. B. Age differences in fluid and crystallized intelligence. Acta Psychol. 26, 107–129 (1967).

    Article 
    CAS 

    Google Scholar 

  • Villarroel, M. A. & Terlizzi, E. P. Symptoms of depression among adults: United States, 2019. NCHS Data Brief. 1–8 (2020).

  • Sikström, S., Pålsson Höök, A. & Kjell O. Precise language responses versus easy rating scales-Comparing respondents’ views with clinicians’ belief of the respondent’s views. PLoS ONE 18, e0267995 (2023).

  • Brenner, P. S. & DeLamater, J. D. Social desirability bias in self-reports of physical activity: is an exercise identity the culprit? Soc. Indic. Res. 117, 489–504 (2014).

    Article 

    Google Scholar 

  • Sikström, S., Kjell, O. N. E. & Kjell, K. in Statistical Semantics: Methods and Applications (eds Sikström, S. & Garcia, D.) 87–103 (Springer, 2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *