Application of a neural network model in estimation of frictional features of tribofilms derived from multiple lubricant additives

Machine Learning


  • Holmberg, K., Andersson, P. & Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

    Article 

    Google Scholar 

  • Wong, V. W. & Tung, S. C. Overview of automotive engine friction and reduction trends—Effects of surface, material, and lubricant-additive technologies. Friction. 4(1), 1–28 (2016).

    Article 
    CAS 

    Google Scholar 

  • Narita, K. Tribological properties of metal V-belt type CVT lubricant. Adv. Tribol. 2012, 476028 (2012).

    Article 

    Google Scholar 

  • Narita, K. Lubricants for metal belt continuously variable transmissions. Lubricants. 2(1), 11–20 (2014).

    Article 

    Google Scholar 

  • Bieber, H. E., Klaus, E. E. & Tewksbury, E. J. A study of tricresyl phosphate as an additive for boundary lubrication. ASLE. Trans. 11(2), 155–161 (1968).

    Article 
    CAS 

    Google Scholar 

  • Godfrey, D. The lubrication mechanism of tricresyl phosphate on steel. ASLE. Trans. 8(1), 1–11 (1965).

    Article 
    CAS 

    Google Scholar 

  • Spikes, H. A., Cameron, A., Gisser, H. & Goldblat, I. L. Additive interference in dibenzyl disulfide extreme pressure lubrication. ASLE. Trans. 17(4), 283–289 (1974).

    Article 
    CAS 

    Google Scholar 

  • Plaza, S. The studies of dibenzyl disulfide tribochemical reactions in the presence of other additives. Tribol. Trans. 32(1), 70–76 (1989).

    Article 
    CAS 

    Google Scholar 

  • Bovington, C. H. & Dacre, B. Thermal decomposition of dibenzyl disulfide in hexadecane. ASLE. Trans. 25(2), 267–271 (1982).

    Article 
    CAS 

    Google Scholar 

  • Topolovec-Miklozic, K., Forbus, T. R. & Spikes, H. Film forming and friction properties of overbased calcium sulphonate detergents. Tribol. Lett. 29, 33–44 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zhu, L., Zhao, G. & Wang, X. Investigation on three oil-miscible ionic liquids as antiwear additives for polyol esters at elevated temperature. Tribol. Int. 109, 336–345 (2017).

    Article 
    CAS 

    Google Scholar 

  • Massoud, T. et al. Effect of ZDDP on lubrication mechanisms of linear fatty amines under boundary lubrication conditions. Tribol. Int. 141, 105954 (2020).

    Article 
    CAS 

    Google Scholar 

  • De Barros-Bouchet, M. I. et al. Tribochemistry of phosphorus additives: Experiments and first-principles calculations. RSC. Adv. 5(61), 49270–49279 (2015).

    Article 
    ADS 

    Google Scholar 

  • Spadaro, F., Rossi, A., Laine, E., Woodward, P. & Spencer, N. D. Elucidating the resistance to failure under tribological tests of various boron-based films by XPS and ToF-SIMS. Appl. Surf. Sci. 425, 948–964 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wang, C., Gojzewski, H. & Schipper, D. J. A multi-technique characterization of the tribofilm formed by a fully formulated CVT fluid. Tribol. Int. 146, 106201 (2020).

    Article 

    Google Scholar 

  • Pandiyan, V. et al. Long short-term memory based semi-supervised encoder-decoder for early prediction of failures in self-lubricating bearings. Friction. 11(1), 109–124 (2023).

    Article 

    Google Scholar 

  • Prost, J. et al. Semi-supervised classification of the state of operation in self-lubricating journal bearings using a random forest classifier. Lubricants. 9(5), 50 (2021).

    Article 

    Google Scholar 

  • Song, Q., Zhao, S. & Wang, M. On the accuracy of fault diagnosis for rolling element bearings using improved DFA and multi-sensor data fusion method. Sensors. 20(22), 6465 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X., Mao, D. & Li, X. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement. 173, 108518 (2021).

    Article 

    Google Scholar 

  • Prost, J., Boidi, G., Puhwein, A. M., Varga, M. & Vorlahufer, G. Classification of operational states in porous journal bearings using a semi-supervised multi-sensor machine learning approach. Tribol. Int. 184, 108464 (2023).

    Article 

    Google Scholar 

  • Stebakov, I., Kornaev, A., Popov, S. & Savin, L. Fault diagnosis systems for rotating machines operating with fluid-film bearings. Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol. 236(10), 1917–1931 (2022).

    Article 

    Google Scholar 

  • Desai, P. S., Granja, V. & Higgs, C. F. Lifetime prediction using a tribology-aware, deep learning-based digital twin of ball bearing-like tribosystems in oil and gas. Processes. 9(6), 922 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wescoat, E., Bradford, J., Krugh, M. & Mears, L. Contamination factor prediction using contrived data for bearing useful life estimation. Manuf. Lett. 33, 850–861 (2022).

    Article 

    Google Scholar 

  • Moder, J., Bergmann, P. & Grun, F. Lubrication regime classification of hydrodynamic journal bearings by machine learning using torque data. Lubricants. 6(4), 108 (2018).

    Article 

    Google Scholar 

  • Mokhtari, N., Pelham, J. G., Nowoisky, S., Bote-Garcia, J. L. & Guhmann, C. Friction and wear monitoring methods for journal bearings of geared turbofans based on acoustic emission signals and machine learning. Lubricants. 8(3), 29 (2020).

    Article 

    Google Scholar 

  • Hasan, M. S., Kordijazi, A., Rohatgi, P. K. & Nosonovsky, M. Machine learning models of the transition from solid to liquid lubricated friction and wear in aluminum-graphite composites. Tribol. Int. 165, 107326 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ulas, M., Altay, O., Gurgenc, T. & Ozel, C. A new approach for prediction of the wear loss of PTA surface coatings using artificial neural network and basic, kernel-based, and weighted extreme learning machine. Friction. 8(6), 1102–1116 (2020).

    Article 
    CAS 

    Google Scholar 

  • Altay, O., Gurgenc, T., Ulas, M. & Ozel, C. Prediction of wear loss quantities of ferro-alloy coating using different machine learning algorithms. Friction. 8(1), 107–114 (2020).

    Article 
    CAS 

    Google Scholar 

  • Bustillo, A., Pimenov, D. Y., Matuszewski, M. & Mikolajczyk, T. Using artificial intelligence models for the prediction of surface wear based on surface isotropy levels. Robot. Comput. Integr. Manuf. 53, 215–227 (2018).

    Article 

    Google Scholar 

  • Gangwar, S. & Pathak, V. K. Dry sliding wear characteristics evaluation and prediction of vacuum casted marble dust (MD) reinforced ZA-27 alloy composites using hybrid improved bat algorithm and ANN. Mater. Today. Commun. 25, 101615 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hasan, M. S., Kordijazi, A., Rohatgi, P. K. & Nosonovsky, M. Triboinformatic modeling of dry friction and wear of aluminum base alloys using machine learning algorithms. Tribol. Int. 161, 107065 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bustillo, A., Reis, R., Machado, A. R. & Pimenov, D. Y. Improving the accuracy of machine-learning models with data from machine test repetitions. J. Intell. Manuf. 33(1), 203–221 (2022).

    Article 

    Google Scholar 

  • Kumar, R. & Chauhan, S. Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement. 65, 166–180 (2015).

    Article 
    ADS 

    Google Scholar 

  • Wang, H., Zhang, C., Yu, X. & Li, Y. Evaluating wear volume of oligoether esters with an interpretable machine learning approach. Tribol. Lett. 71(2), 43 (2023).

    Article 

    Google Scholar 

  • Dai, K. & Gao, X. Estimating antiwear properties of lubricant additives using a quantitative structure tribo-ability relationship model with back propagation neural network. Wear. 306, 242–247 (2013).

    Article 
    CAS 

    Google Scholar 

  • Rosenkranz, A., Marian, M., Profito, F. J., Aragon, N. & Shah, R. The use of artificial intelligence in tribology—A perspective. Lubricants. 9(1), 2 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shah, R. et al. Ensemble deep learning for wear particle image analysis. Lubricants. 11(11), 461 (2023).

    Article 

    Google Scholar 

  • Sharma, K., Goyal, D. & Kanda, R. Intelligent fault diagnosis of bearings based on convolutional neural network using infrared thermography. Proc. Inst. Mech. Eng. Part. J. J. Eng. Tribol. 236(12), 2439–2446 (2022).

    Article 

    Google Scholar 

  • Liu, Z. et al. Intelligent classification of online wear particle in lubricating oil using optical direct imaging method and convolutional neural network for rotating machinery. Tribol. Int. 189, 109015 (2023).

    Article 

    Google Scholar 

  • Selvaraju, R. R. et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2020).

    Article 
    MathSciNet 

    Google Scholar 

  • Park, S. & Wallraven, C. Comparing facial expression recognition in humans and machines: Using CAM, GradCAM, and extremal perturbation. Pattern. Recogn. 13188, 403–416 (2022).

    Article 

    Google Scholar 

  • Ghadai, S., Balu, A., Sarkar, S. & Krishnamurthy, A. Learning localized features in 3D CAD models for manufacturability analysis of drilled holes. Comput. Aided. Geom. Des. 62, 263–275 (2018).

    Article 
    MathSciNet 

    Google Scholar 

  • Stachowiak, G. P., Podsiadlo, P. & Stachowiak, G. W. Evaluation of methods for reduction of surface texture features. Tribol. Lett. 22(2), 151–165 (2006).

    Article 
    CAS 

    Google Scholar 

  • Bolelli, G. et al. Tribology of HVOF- and HVAF-sprayed WC-10Co4Cr hardmetal coatings: A comparative assessment. Surf. Coat. Technol. 265, 125–144 (2015).

    Article 
    CAS 

    Google Scholar 

  • Itoga, M. et al. Toward resolving anxiety about the accelerated corrosive wear of steel lubricated with the fluorine-containing ionic liquids at elevated temperature. Tribol. Int. 93, 640–650 (2016).

    Article 
    CAS 

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. https://doi.org/10.48550/arXiv.1512.03385.

  • Matsui, Y., Aoki, S. & Masuko, M. Influence of coexisting functionalized polyalkylmethacrylates on the formation of ZnDTP-derived tribofilm. Tribol. Int. 100, 152–161 (2016).

    Article 
    CAS 

    Google Scholar 

  • Sato, T., Aoki, S. & Masuko, M. Determination of the inherent friction characteristic of ZnDTP-derived tribofilms formed inhomogeneously over the contact surfaces. Tribol. Int. 113, 4–12 (2017).

    Article 
    CAS 

    Google Scholar 

  • van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *