Roche, J. R. et al. A 100-year review: A century of change in temperate grazing dairy systems. J. Dairy Sci. 100, 10189–10233. https://doi.org/10.3168/jds.2017-13182 (2017).
Google Scholar
Roche, J. R. et al. Review: New considerations to refine breeding objectives of dairy cows for increasing robustness and sustainability of grass-based milk production systems. Animal 12, 350–362. https://doi.org/10.1017/S1751731118002471 (2018).
Google Scholar
Moscovici Joubran, A., Pierce, K. M., Garvey, N., Shalloo, L. & O’Callaghan, T. F. Invited review: A 2020 perspective on pasture-based dairy systems and products. J. Dairy Sci. 104, 7364–7382. https://doi.org/10.3168/jds.2020-19776 (2020).
Google Scholar
Daley, C. A., Abbott, A., Doyle, P. S., Nader, G. A. & Larson, S. A review of fatty acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 9, 1–12. https://doi.org/10.1186/1475-2891-9-10 (2010).
Google Scholar
Elgersma, A. Grazing increases the unsaturated fatty acid concentration of milk from grass-fed cows: A review of the contributing factors, challenges and future perspectives. Eur. J. Lipid Sci. Technol. 117, 1345–1369. https://doi.org/10.1002/ejlt.201400469 (2015).
Google Scholar
van Zanten, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E. & de Boer, I. J. M. Global food supply: Land use efficiency of livestock systems. Int. J. Life Cycle Assess. 21, 747–758. https://doi.org/10.1007/s11367-015-0944-1 (2016).
Google Scholar
García, S. C. & Fulkerson, W. Opportunities for future Australian dairy systems: a review. Aust. J. Exp. Res. 45, 1041–1055. https://doi.org/10.1071/EA04143 (2005).
Google Scholar
Hanrahan, L. et al. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 101, 5474–5485. https://doi.org/10.3168/jds.2017-13223 (2018).
Google Scholar
Shalloo, L. et al. Review: Grass-based dairy systems, data and precision technologies. Animal 12, s262–s271. https://doi.org/10.1017/S175173111800246X (2018).
Google Scholar
Wales, W. J. & Kolver, E. S. Challenges of feeding dairy cows in Australia and New Zealand. Anim. Prod. Sci. 57, 1366–1383. https://doi.org/10.1071/AN16828 (2017).
Google Scholar
García, S. C., Islam, M. R., Clark, C. E. F. & Martin, P. M. Kikuyu-based pasture for dairy production: A review. Crop Pasture Sci. 65, 787–797. https://doi.org/10.1071/cp13414 (2014).
Google Scholar
Chapman, D. Using ecophysiology to improve farm efficiency: Application in temperate dairy grazing systems. Agriculture 6, 17–36. https://doi.org/10.3390/agriculture6020017 (2016).
Google Scholar
Macdonald, K. A., Glassey, C. B. & Rawnsley, R. P. in 4th Australasian Dairy Science Symposium. p. 199–209 (2010).
García, S. C. & Holmes, C. Seasonality of calving in pasture-based dairy systems: its effects on herbage production, utilisation and dry matter intake. Aust. J. Exp. Res. 45, 1–9. https://doi.org/10.1071/EA00110 (2005).
Google Scholar
Fariña, S., Garcia, S. C. & Fulkerson, W. J. A complementary forage system whole-farm study: forage utilisation and milk production. Anim. Prod. Sci. 51, 460–470. https://doi.org/10.1071/AN10242 (2011).
Google Scholar
Fariña, S., Garcia, S. C., Fulkerson, W. J. & Barchia, I. M. Pasture-based dairy farm systems increasing milk production through stocking rate or milk yield per cow: Pasture and animal responses. Grass Forage Sci. 66, 316–332. https://doi.org/10.1111/j.1365-2494.2011.00795.x (2011).
Google Scholar
Fulkerson, W. J. & Donaghy, D. J. Plant-soluble carbohydrate reserves and senescence – key criteria for developing an effective grazing management system for ryegrass-based pastures: a review. Aust. J. Exp. Agric. 41, 261–275 (2001).
Google Scholar
García, S. C. et al. in 22nd International Grassland Congress. p. 1709–1716 (2013).
Heins, B. J., Pereira, G. M. & Sharpe, K. T. Precision technologies to improve dairy grazing systems. JDS Commun. 4, 308–315. https://doi.org/10.3168/jdsc.2022-0308 (2023).
Google Scholar
Ortega, G. et al. Monitoring herbage mass and pasture growth rate of large grazing areas: A comparison of the correspondence, cost and reliability of indirect methods. J. Agric. Sci. 161, 502–511. https://doi.org/10.1017/s0021859623000333 (2023).
Google Scholar
Fulkerson, W. J. & Slack, K. Estimating mass of temperate and tropical pastures in the subtropics. Aust. J. Exp. Agric. 33, 865–869 (1993).
Google Scholar
Reeves, M., Fulkerson, W. J. & Kellaway, R. C. Forage quality of kikuyu (Penisetum clandestinum): Time of defoliation and nitrogen fertiliser application and in comparison with perennail ryegrass (Lolium perenne). Aust. J. Agric. Res. 47, 1349–1359 (1996).
Google Scholar
López-Díaz, J. E., Roca-Fernández, A. I. & González-Rodríguez, A. Measuring herbage mass by Non-destructive methods: A review. J. Agric. Sci. Technol. 1, 303–314 (2011).
Reinermann, S., Asam, S. & Kuenzer, C. Remote sensing of grassland production and management—A review. Remote Sens. 12, 1949–1981. https://doi.org/10.3390/rs12121949 (2020).
Google Scholar
French, P., O’Brien, B. & Shalloo, L. Development and adoption of new technologies to increase the efficiency and sustainability of pasture-based systems. Anim. Prod. Sci. 55, 931–935. https://doi.org/10.1071/an14896 (2015).
Google Scholar
McSweeney, D., Coughlan, N. E., Cuthbert, R. N., Halton, P. & Ivanov, S. Micro-sonic sensor technology enables enhanced grass height measurement by a rising plate meter. Inf. Process. Agric. 6, 279–284. https://doi.org/10.1016/j.inpa.2018.08.009 (2019).
Google Scholar
Doonan, B. M. & Irvine, L. D. Pasture management for Tasmanian dairy farmers. 1–61 (Tasmania, 2006).
Nickmilder, C. et al. Development of machine learning models to predict compressed sward height in walloon pastures based on sentinel-1, sentinel-2 and meteorological data using multiple data transformations. Remote Sens. 13, 408–437. https://doi.org/10.3390/rs13030408 (2021).
Google Scholar
Edirisinghe, A., Clark, D. & Waugh, D. Spatio-temporal modelling of biomass of intensively grazed perennial dairy pastures using multispectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 16, 5–16. https://doi.org/10.1016/j.jag.2011.11.006 (2012).
Google Scholar
Edirisinghe, A., Hill, M. J., Donald, G. E. & Hyder, M. Quantitative mapping of pasture biomass using satellite imagery. Int. J. Remote Sens. 32, 2699–2724. https://doi.org/10.1080/01431161003743181 (2011).
Google Scholar
Piñeiro, G., Oesterheld, M. & Paruelo, J. M. Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystem 9, 357–373. https://doi.org/10.1007/s10021-005-0013-x (2006).
Google Scholar
Sellers, P. J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6, 1335–1372. https://doi.org/10.1080/01431168508948283 (1985).
Google Scholar
LIC. SPACETM, https://www.lic.co.nz/products-and-services/space/. Accessed 30 May 2023.
Pasture.io. Pasture.io-pasture measurement on autopilot, https://pasture.io/. Accessed 12 May 2023.
Stumpe, C., Leukel, J. & Zimpel, T. Prediction of pasture yield using machine learning-based optical sensing: A systematic review. Precis. Agric. 25, 430–459. https://doi.org/10.1007/s11119-023-10079-9 (2023).
Google Scholar
Ara, I. et al. Application, adoption and opportunities for improving decision support systems in irrigated agriculture: A review. Agric. Water Manag. 257, 107161–107177. https://doi.org/10.1016/j.agwat.2021.107161 (2021).
Google Scholar
Ogungbuyi, M. G., Mohammed, C., Ara, I., Fischer, A. M. & Harrison, M. T. Advancing skyborne technologies and high-resolution satellites for pasture monitoring and improved management: A review. Remote Sens. 15, 4866. https://doi.org/10.3390/rs15194866 (2023).
Google Scholar
Belgiu, M. & Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 (2016).
Google Scholar
de Togeiro Alckmin, G., Kooistra, L., Rawnsley, R. & Lucieer, A. Comparing methods to estimate perennial ryegrass biomass: Canopy height and spectral vegetation indices. Precis. Agric. 22, 205–225. https://doi.org/10.1007/s11119-020-09737-z (2020).
Google Scholar
Kallenbach, R. L. Describing the dynamic: Measuring and assessing the value of plants in the pasture. Crop Sci. 55, 2531–2539. https://doi.org/10.2135/cropsci2015.01.0065 (2015).
Google Scholar
L’Huillier, P. J. & Thomson, N. A. in Proceedings of New Zealand Grassland Association. p. 117–122 (1988).
King, W. M. G., Rennie, G. M., Dalley, D. E., Dynes, R. A. & Upsdell, M. P. in 4th Australasian Dairy Science Symposium. p. 233–238 (2010).
Gargiulo, J. et al. Spatial and temporal pasture biomass estimation integrating electronic plate meter, planet cubesats and sentinel-2 satellite data. Remote Sens. 12, 3222–3238. https://doi.org/10.3390/rs12193222 (2020).
Google Scholar
Botha, P. R., Meeske, R. & Snyman, H. A. Kikuyu over-sown with ryegrass and clover; dry matter production, botanical composition and nutritional value. Afr. J. Range Forage Sci. 25, 93–101. https://doi.org/10.2989/AJRF.2008.25.3.1.598 (2008).
Google Scholar
Alvarez-Mendoza, C. I. et al. Predictive modeling of above-ground biomass in brachiaria pastures from satellite and UAV imagery using machine learning approaches. Remote Sens. 14, 5870–5891. https://doi.org/10.3390/rs14225870 (2022).
Google Scholar
Morse-McNabb, E. M., Hasan, M. F. & Karunaratne, S. A multi-variable sentinel-2 random forest machine learning model approach to predicting perennial ryegrass biomass in commercial dairy farms in southeast Australia. Remote Sens. 15, 2915–2946. https://doi.org/10.3390/rs15112915 (2023).
Google Scholar
Punalekar, S. M. et al. Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sens. Environ. 218, 207–220. https://doi.org/10.1016/j.rse.2018.09.028 (2018).
Google Scholar
Anderson, G. & McNaughton, L. in 8th Australasian Dairy Symposium. p. 191–195 (2018).
Woodward, S. J. R., Neal, M. B. & Cross, P. S. Preliminary investigation into the feasibility of combining satellite and GPS data to identify pasture growth and grazing. J. N. Z. Grassl. 81, 47–54. https://doi.org/10.33584/jnzg.2019.81.404 (2019).
Google Scholar
Harrison, M. T., Roggero, P. P. & Zavattaro, L. Simple, efficient and robust techniques for automatic multi-objective function parameterisation: Case studies of local and global optimisation using APSIM. Environ. Model. Softw. 117, 109–133. https://doi.org/10.1016/j.envsoft.2019.03.010 (2019).
Google Scholar
Handcock, R. N. et al. in Innovations in remote sensing and photogrammetry lecture notes in geoinformation and cartography (eds Simon Jones & Karin Reinke) Ch. Chapter 24, 309–321 (Springer, 2009).
Mata, G. et al. in Proceedings of New Zealand Grassland Association. p. 109–114 (2011).
Ogungbuyi, M. G. et al. Enabling regenerative agriculture using remote sensing and machine learning. Land 12, 1142. https://doi.org/10.3390/land12061142 (2023).
Google Scholar
Fulkerson, W. J., Slack, K. & Havilah, E. The effect of defoliation interval and height on growth and herbage quality of kikuyu grass (Pennisetum clandestinum). Trop. Grassl. 33, 138–145 (1999).
Anderson, G. et al. Use of pasture botanical composition data on the accuracy of satellite pasture biomass estimates. J. N. Z. Grassl. 81, 249–254. https://doi.org/10.33584/jnzg.2019.81.367 (2019).
Google Scholar
Reeves, M., Fulkerson, W. J., Kellaway, R. C. & Dove, H. A comparison of three techniques to determine the herbage intake of dairy cows grazing kikuyu (Pennisetum clandestinum) pasture. Aust. J. Agric. Res. 36, 23–30 (1996).
Google Scholar
Numata, I. et al. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data. Remote Sens. Environ. 109, 314–327. https://doi.org/10.1016/j.rse.2007.01.013 (2007).
Google Scholar
Australian Bureau of Meteorology. Historical weather data, http://www.bom.gov.au/climate/data-services/data-requests.shtml/. Accessed 9 April 2022.
Chang-Fung-Martel, J., Harrison, M. T., Rawnsley, R., Smith, A. P. & Meinke, H. The impact of extreme climatic events on pasture-based dairy systems: A review. Crop Pasture Sci. 68, 1158–1169. https://doi.org/10.1071/cp16394 (2017).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. (2009).
Planet Team. Planet Imagery Product Specifications, https://www.planet.com/products/planet-imagery/. Accessed 15 Nov 2022.
European Space Agency. Sentinel-2, https://sentinel.esa.int/web/sentinel/missions/sentinel-2/. Accessed 10 Oct 2022.
Bibby, J. & Toutenburg, H. Improved estimation and prediction. J. Appl. Math. Mech 58, 45–49. https://doi.org/10.1002/zamm.19780580108 (1978).
Google Scholar