Sørensen, T. Forecasting the global obesity epidemic through 2050. Lancet 405(10481), 756–757. https://doi.org/10.1016/S0140-6736(25)00260-0 (2025).
Google Scholar
Bluher, M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15(5), 288–298. https://doi.org/10.1038/s41574-019-0176-8 (2019).
Google Scholar
Piqueras, P. et al. Anthropometric indicators as a tool for diagnosis of obesity and other health risk factors: A literature review. Front. Psychol. 12, 631179. https://doi.org/10.3389/fpsyg.2021.631179 (2021).
Google Scholar
The Lancet Diabetes Endocrinology. Redefining obesity: Advancing care for better lives. Lancet Diabetes Endocrinol. 13(2), 75. https://doi.org/10.1016/S2213-8587(25)00004-X (2025).
Google Scholar
Zhou, X. et al. Association of anthropometric and obesity indices with abnormal blood lipid levels in young and middle-aged adults. Heliyon 11(1), e41310. https://doi.org/10.1016/j.heliyon.2024.e41310 (2024).
Google Scholar
Nimptsch, K., Konigorski, S. & Pischon, T. Diagnosis of obesity and use of obesity biomarkers in science and clinical medicine. Metabolism 92, 61–70. https://doi.org/10.1016/j.metabol.2018.12.006 (2021).
Google Scholar
Frühbeck, G. et al. Obesity: The gateway to ill health—an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes. Facts 6(2), 117–120. https://doi.org/10.1159/000350627 (2013).
Google Scholar
Rubino, F. et al. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 13(3), 221–262. https://doi.org/10.1016/S2213-8587(24)00316-4 (2025).
Google Scholar
Coral, D. E. et al. Subclassification of obesity for precision prediction of cardiometabolic diseases. Nat. Med. 31(2), 534–543. https://doi.org/10.1038/s41591-024-03299-7 (2025).
Google Scholar
Ceniccola, G. D. et al. Current technologies in body composition assessment: Advantages and disadvantages. Nutrition 62, 25–31. https://doi.org/10.1016/j.nut.2018.11.028 (2019).
Google Scholar
Carbone, S., Lavie, C. J. & Arena, R. Obesity and heart failure: Focus on the obesity paradox. Mayo Clin. Proc. 92(2), 266–279. https://doi.org/10.1016/j.mayocp.2016.11.001 (2017).
Google Scholar
Merchant, R. A. et al. Relationship of fat mass index and fat free mass index with body mass index and association with function, cognition and sarcopenia in Pre-Frail older adults. Front. Endocrinol. 12, 765415. https://doi.org/10.3389/fendo.2021.765415 (2021).
Google Scholar
Kim, C. H. et al. Norm references of fat-free mass index and fat mass index and subtypes of obesity based on the combined FFMI-%BF indices in the Korean adults aged 18–89 year. Obes. Res. Clin. Pract. 5(3), e169–e266. https://doi.org/10.1016/j.orcp.2011.01.004 (2011).
Google Scholar
Romero-Corral, A. et al. Accuracy of body mass index in diagnosing obesity in the adult general population. Int. J. Obes. 32(6), 959–966. https://doi.org/10.1038/ijo.2008.11 (2008).
Google Scholar
Gažarová, M., Bihari, M., Lorková, M., Lenártová, P. & Habánová, M. The use of different anthropometric indices to assess the body composition of young women in relation to the incidence of obesity, sarcopenia and the premature mortality risk. Int. J. Environ. Res. Public Health 19(19), 12449. https://doi.org/10.3390/ijerph191912449 (2022).
Google Scholar
Górnicka, M. et al. Anthropometric indices as predictive screening tools for obesity in adults; the need to define Sex-Specific Cut-Off points for anthropometric indices. Appl. Sci. 12(12), 6165. https://doi.org/10.3390/app12126165 (2022).
Google Scholar
Gažarová, M., Bihari, M. & Šoltís, J. Fat and fat-free mass as important determinants of body composition assessment in relation to sarcopenic obesity. Rocz. Panstw. Zakl. Hig. 74(1), 59–69. https://doi.org/10.32394/rpzh.2023.0243 (2023).
Google Scholar
Khalil, S. F., Mohktar, M. S. & Ibrahim, F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 14(6), 10895–10928. https://doi.org/10.3390/s140610895 (2014).
Google Scholar
Bosy-Westphal, A. & Müller, M. J. Diagnosis of obesity based on body composition-associated health risks—Time for a paradigm change. Obes. Rev. 22(2), e13190. https://doi.org/10.1111/obr.13190 (2021).
Google Scholar
Salihefendic, N., Zildzic, M., Masic, I. & Jankovic, S. M. Anthropometric data by using bioelectrical analysis as parameters for new classification and definition of obesity. Mater. Soc. Med. 37(1), 11–17. https://doi.org/10.5455/msm.2024.37.11-17 (2025).
Google Scholar
Genc, A. C. & Arıcan, E. Obesity classification: A comparative study of machine learning models excluding weight and height data. Rev. Assoc. Med. Bras. 71(1), e20241282 (2025).
Google Scholar
Rostam Niakan Kalhori, S., Najafi, F., Hasannejadasl, H. & Heydari, S. Artificial intelligence-enabled obesity prediction: A systematic review of cohort data analysis. Int. J. Med. Inf. 196, 105804. https://doi.org/10.1016/j.ijmedinf.2025.105804 (2025).
Google Scholar
Kehinde, O. Machine learning in predictive modelling: Addressing chronic disease management through optimized healthcare processes. Int. J. Res. Publ. Rev. 6, 1525–1539 (2025).
Scafoglieri, A. & Clarys, J. P. Dual energy X-ray absorptiometry: Gold standard for muscle mass? J. Cachexia Sarcopenia Muscle 9(4), 786–787. https://doi.org/10.1002/jcsm.12308 (2018).
Google Scholar
Ballesteros-Pomar, M. D. et al. Bioelectrical impedance analysis as an alternative to dual-energy x-ray absorptiometry in the assessment of fat mass and appendicular lean mass in patients with obesity. Nutrition 93, 111442. https://doi.org/10.1016/j.nut.2021.111442 (2022).
Google Scholar
Esteva, A. et al. A guide to deep learning in healthcare. Nat. Med. 25(1), 24–29. https://doi.org/10.1038/s41591-018-0316-z (2019).
Google Scholar
Azmi, S. et al. Harnessing artificial intelligence in obesity research and management: A comprehensive review. Diagnostics 15(3), 396. https://doi.org/10.3390/diagnostics15030396 (2025).
Google Scholar
Huang, L. et al. The role of artificial intelligence in obesity risk prediction and management: Approaches, insights, and recommendations. Medicina 61(2), 358. https://doi.org/10.3390/medicina61020358 (2025).
Google Scholar
Choong, C. et al. Identifying individuals at risk for weight gain using machine learning in electronic medical records from the united States. Diabetes Obes. Metab. 27(6), 3061–3071. https://doi.org/10.1111/dom.16311 (2025).
Google Scholar
Jawara, D. et al. Using machine learning to predict weight gain in adults: an observational analysis from the all of Us research program. J. Surg. Res. 306, 43–53. https://doi.org/10.1016/j.jss.2024.11.042 (2025).
Google Scholar
Huang, A. A. & Huang, S. Y. Application of a transparent artificial intelligence algorithm for US adults in the obese category of weight. PLoS One 19(5), e0304509. https://doi.org/10.1371/journal.pone.0304509 (2024).
Google Scholar
Atkinson, J. G. & Atkinson, E. G. Machine learning and health care: Potential benefits and issues. J. Ambul. Care Manag. 46(2), 114–120. https://doi.org/10.1097/JAC.0000000000000453 (2023).
Google Scholar
Bays, H. E. et al. Artificial intelligence and obesity management: an obesity medicine association (OMA) clinical practice statement (CPS) 2023. Obes. Pill. 6, 100065. https://doi.org/10.1016/j.obpill.2023.100065 (2023).
Google Scholar
Safaei, M., Sundararajan, E. A., Driss, M., Boulila, W. & Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 136, 104754 (2021).
Google Scholar
An, R., Shen, J. & Xiao, Y. Applications of artificial intelligence to obesity research: Scoping review of methodologies. J. Med. Internet Res. 24(12), e40589. https://doi.org/10.2196/40589 (2022).
Google Scholar
Goecks, J., Jalili, V., Heiser, L. & Gray, J. W. How machine learning will transform biomedicine. Cell 181(1), 92–101. https://doi.org/10.1016/j.cell.2020.03.022 (2020).
Google Scholar
Bull, F. C. et al. World health organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 54(24), 1451–1462. https://doi.org/10.1136/bjsports-2020-102955 (2020).
Google Scholar
Harty, P. S. et al. Military body composition standards and physical performance: Historical perspectives and future directions. J. Strength. Cond Res. 36(12), 3551–3561. https://doi.org/10.1519/JSC.0000000000004142 (2022).
Google Scholar
Cohen, J. A power primer. Psychol. Bull. 112(1), 155–159 (1992).
Google Scholar
World Medical Association. World medical association declaration of helsinki: Ethical principles for medical research involving human subjects. JAMA 310(20), 2191–2194. https://doi.org/10.1001/jama.2013.281053 (2013).
Google Scholar
Nilstun, T. Nya Forskningsetiska Riktlinjer Från CIOMS. Föredömlig avvägning autonomi-nytta-rättvisa. Lakartidningen 91(3), 157–161 (1994).
Google Scholar
Seaw, K. M., Leow, M. K. S. & Bi, X. Early obesity risk prediction via non-dietary lifestyle factors using machine learning approaches. Clin. Obes. 15(1), e70011. https://doi.org/10.1111/cob.70011 (2025).
Google Scholar
Syahidah, H., Irsandi, N., Nur Ajizah, A. & Amelia, A. Obesity prediction using machine learning algorithms. Int. J. Adv. Technol. Innov. Sci. 2(1), 1 (2025). https://journal.irpi.or.id/index.php/ijatis
Dirik, M. Application of machine learning techniques for obesity prediction: A comparative study. J. Complex. Health Sci. 6(2), 16–34. https://doi.org/10.21595/chs.2023.23193 (2023).
Google Scholar
Chen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794. https://doi.org/10.1145/2939672.2939785 (2016).
Benhar, H., Idri, A. & Fernández-Alemán, J. L. Data preprocessing for heart disease classification: A systematic literature review. Comput. Methods Programs Biomed. 195, 105635. https://doi.org/10.1016/j.cmpb.2020.105635 (2020).
Google Scholar
Wu, Y., Li, D. & Vermund, S. H. Advantages and limitations of the body mass index (BMI) to assess adult obesity. Int. J. Environ. Res. Public Health 21(6), 757. https://doi.org/10.3390/ijerph21060757 (2024).
Google Scholar
Bosch, T. A. et al. Visceral adipose tissue measured by DXA correlates with measurement by CT and is associated with cardiometabolic risk factors in children. Pediatr. Obes. 3, 172–179. https://doi.org/10.1111/ijpo.249 (2015).
Google Scholar
Jin, M. et al. Characteristics and reference values of fat mass index and fat free mass index by bioelectrical impedance analysis in an adult population. Clin. Nutr. 38(5), 2325–2332. https://doi.org/10.1016/j.clnu.2018.10.010 (2019).
Google Scholar
Peltz, G., Aguirre, M. T., Sanderson, M. & Fadden, M. K. The role of fat mass index in determining obesity. Am. J. Hum. Biol. 22(5), 639–647. https://doi.org/10.1002/ajhb.21056 (2010).
Google Scholar
Liu, P., Ma, F., Lou, H. & Liu, Y. The utility of fat mass index vs. body mass index and percentage of body fat in the screening of metabolic syndrome. BMC Public Health 13, 629. https://doi.org/10.1186/1471-2458-13-629 (2013).
Google Scholar
Kuk, J. L. et al. Visceral fat is an independent predictor of all-cause mortality in men. Obesity 14(2), 336–341. https://doi.org/10.1038/oby.2005.45 (2005).
Google Scholar
Ramírez-Vélez, R. et al. Percentage of body fat and fat mass index as a screening tool for metabolic syndrome prediction in Colombian university students. Nutrients 9(9), 1009. https://doi.org/10.3390/nu9091009 (2017).
Google Scholar
Huang, A. A. & Huang, S. Y. Increasing transparency in machine learning through bootstrap simulation and shapely additive explanations. PLoS One 18 (2), e0281922. https://doi.org/10.1371/journal.pone.0281922 (2023).
Google Scholar
Zhou, Y. et al. Distinguishing apathy and depression in older adults with mild cognitive impairment using text, audio, and video based on multiclass classification and shapely additive explanations. Int. J. Geriatr. Psychiatry. https://doi.org/10.1002/gps.5827 (2022).
Google Scholar
Lundberg, S. M. & Lee, S. I. A Unified approach to interpreting model predictions. Adv. Neural Inf. Process Syst. 30, 4765–4774 (2017).
Lin, W., Shi, S., Huang, H., Wen, J. & Chen, G. Predicting risk of obesity in overweight adults using interpretable machine learning algorithms. Front. Endocrinol. 14, 1292167. https://doi.org/10.3389/fendo.2023.1292167 (2023).
Google Scholar
Barber, T. M., Kabisch, S., Pfeiffer, A. F. & Weickert, M. O. Optimised skeletal muscle mass as a key strategy for obesity management. Metabolites 15(2), 85. https://doi.org/10.3390/metabo15020085 (2025).
Google Scholar
AlMasud, A. A. et al. Relationship of fat mass index and fat free mass index with body mass index and association with sleeping patterns and physical activity in Saudi young adults women. J. Health Popul. Nutr. 44(1), 64. https://doi.org/10.1186/s41043-025-00795-5 (2025).
Google Scholar
Butte, N. F. et al. Energetic adaptations persist after bariatric surgery in severely obese adolescents. Obesity 23(3), 591–601. https://doi.org/10.1002/oby.20994 (2015).
Google Scholar
Yang, R. et al. Correlations and consistency of body composition measurement indicators and BMI: A systematic review. Int. J. Obes. 49(1), 4–12. https://doi.org/10.1038/s41366-024-01638-9 (2025).
Bosy-Westphal, A. & Müller, M. J. Diagnosis of obesity based on body composition-associated health risks—Time for a change in paradigm. Obes. Rev. 22(2), e13190. https://doi.org/10.1111/obr.13190 (2021).
Google Scholar
Abraham, A. & Yaghootkar, H. Identifying obesity subtypes: A review of studies utilising clinical biomarkers and genetic data. Diabet. Med. 40(12), e15226. https://doi.org/10.1111/dme.15226 (2023).
Google Scholar
