Schornick, Z., Ellis, N., Ray, E., Snyder, B.-J. & Thomas, K. Hope that benefits others: A systematic literature review of hope theory and prosocial outcomes. Int. J. Appl. Posit. Psychol.8, 37–61 (2023).
Snyder, C. R. Hope theory: Rainbows in the mind. Psychol. Inq.13, 249–275 (2002).
Ezzy, D. Illness narratives: Time, hope and HIV. Soc. Sci. Med.50, 605–617 (2000).
Google Scholar
Lohne, V. & Severinsson, E. Hope during the first months after acute spinal cord injury. J. Adv. Nurs.47, 279–286 (2004).
Google Scholar
Wiles, R., Cott, C. & Gibson, B. E. Hope, expectations and recovery from illness: A narrative synthesis of qualitative research. J. Adv. Nurs.64, 564–573 (2008).
Google Scholar
O’Hara, D. J. spsampsps O’Hara, E. F. Hope and well-being in sustainable development. Good Heal. Well-Being 1–10 (2021).
Webb, D. Modes of hoping. Hist. Hum. Sci.20, 65–83 (2007).
Maretha, C. Meaning relationship of the verb hope and wish in English. SIGEH ELT: Journal of Literature and Linguistics1, 46–63 (2021).
Verhaeghe, S. T., Van Zuuren, F. J., Defloor, T., Duijnstee, M. S. & Grypdonck, M. H. How does information influence hope in family members of traumatic coma patients in intensive care unit?. J. Clin. Nurs.16, 1488–1497 (2007).
Google Scholar
Bender, H. & Rawluk, A. Adaptive hope: A process for social environmental change. Ecol. Soc.https://doi.org/10.5751/ES-14099-280214 (2023).
Google Scholar
Butt, S. et al. Emothreat@ fire2022: Shared track on emotions and threat detection in urdu. In Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation, 1–3 (2022).
Butt, S. et al. Guret: Distinguishing guilt and regret related text. arXiv preprint arXiv:2401.16541 (2024).
Balouchzahi, F., Sidorov, G. & Gelbukh, A. Polyhope: Two-level hope speech detection from tweets. Expert Syst. Appl.225, 120078 (2023).
Chakravarthi, B. R. HopeEDI: A multilingual hope speech detection dataset for equality, diversity, and inclusion. In Nissim, M., Patti, V., Plank, B. & Durmus, E. (eds.) Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media, 41–53 (Association for Computational Linguistics, Barcelona, Spain (Online), 2020).
Avelino, H. Mexico city spanish. J. Int. Phonetic Assoc.48, 223–230 (2018).
Jeffery, J. V. & Van Beuningen, C. Language education in the EU and the US: Paradoxes and parallels. Prospects48, 175–191 (2020).
García-Baena, D., García-Cumbreras, M. Á., Jiménez-Zafra, S. M., García-Díaz, J. A. & Valencia-García, R. Hope speech detection in Spanish: The LGBT case. Lang. Resour. Eval.57, 1487–1514 (2023).
Hande, A. et al. Hope speech detection in under-resourced kannada language. arXiv e-prints arXiv–2108 (2021).
Nath, T., Singh, V. K. & Gupta, V. Bonghope: An annotated corpus for bengali hope speech detection. Int. J. Inf. Technol. 1–9 (2025).
Malik, M. S. I., Nazarova, A., Jamjoom, M. M. & Ignatov, D. I. Multilingual hope speech detection: A robust framework using transfer learning of fine-tuning roberta model. J. King Saud Univ. – Comput. Inf. Sci.35, 101736 (2023).
Balouchzahi, F., Butt, S., Amjad, M., Sidorov, G. & Gelbukh, A. Urduhope: Analysis of hope and hopelessness in urdu texts. Available at SSRN 4881844 (2024).
Jiménez-Zafra, S. M. et al. Overview of hope at iberlef 2023: Multilingual hope speech detection. Procesamiento del lenguaje natural 71, 371–381 (2023).
García-Baena, D. et al. Overview of HOPE at IberLEF 2024: Approaching Hope Speech Detection in Social Media from Two Perspectives, for Equality, Diversity and Inclusion and as Expectations. Procesamiento del Lenguaje Natural 73 (2024).
Domínguez-Olmedo, J. L., Vázquez, J. M. & Álvarez, V. P. I2c-huelva at hope2023@ iberlef: Simple use of transformers for automatic hope speech detection. In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).
Yigezu, M. G., Bade, G. Y., Kolesnikova, O. & Sidorov, G. Multilingual hope speech detection using machine learning. In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).
Ngo, A. & Tran, H. T. H. Zootopi at HOPE2023@ IberLEF: Is zero-shot chatgpt the future of hope speech detection? In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).
Rodríguez-García, M. Á., Riaño-Martínez, A. & Montalvo-Herranz, S. Urjc-team at hope2023@ iberlef: Multilingual hope speech detection using transformers architecture. In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).
Ahani, Z., Sidorov, G., Kolesnikova, O. & Gelbukh, A. F. Zavira at hope2023@ iberlef: Hope speech detection from text using tf-idf features and machine learning algorithms. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).
Pan, R., Alcaraz-Mármol, G. & García-Sánchez, F. Umuteam at hope2023@ iberlef: Evaluation of transformer model with data augmentation for multilingual hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).
ShahikiTash, M., ArmentaSegura, J., Kolesnikova, O., Sidorov, G. & Gelbukh, A. Lidoma at hope2023iberlef: Hope speech detection using lexical features and convolutional neural networks. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).
Balaji, V., A., K., A., B. & B., B. Nlp_ssn_cse at hope2023iberlef: Multilingual hope speech detection using machine learning algorithms. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).
Nguyen Thi, T. & Dang Van, T. An Empirical Study of Prompt Engineering with Large Language Models for Hope Detection in English and Spanish. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Chau Pham Quoc, H. & Dang Van, T. Choosing the Right Language Model for the Right Task. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Bui Hong, S., Le Minh, Q. & Dang Van, T. ABCD Team at HOPE 2024: Hope Detection with BERTology Models and Data Augmentation. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Armenta-Segura, J. & Sidorov, G. Ometeotl at hope2024@iberlef: Custom bert models for hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Pan, R., Ángela Almela & Alcaraz-Mármol, G. UMUTeam at hope@iberlef 2024: Fine-tuning approach with sentiment and emotion features for hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Ibrahim, M. Parameter-free spanish hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Ullah, F., Zamir, M. T., Ahmad, M., Sidorov, G. & Gelbukh, A. Hope: A multilingual approach to identifying positive communication in social media. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Ponnusamy, K. K. et al. VEL@iberlef 2024: Hope speech detection in spanish social media comments using bert pre-trained model. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Divakaran, S., Girish, K. & Shashirekha, H. L. Hope on the horizon: Experiments with learning models for hope speech detection in spanish and english. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Bade, G. Y., Koleniskova, O., Oropeza, J. L., Sidorov, G. & Bergene, K. F. Hope speech in social media texts using transformer. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Naseeb, A., Eyob, K. L., Sidorov, G. & Kolesnikova, O. Hope@iberlef 2024: Beyond binary bounds-classifying hope in online discourse. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Lemlem, E., Tsadkan, Y., Amna, N., Grigori, S. & Ildar, B. Enhancing hope speech detection on twitter using machine learning and transformer models. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).
Eaves, E. R., Nichter, M. & Ritenbaugh, C. Ways of hoping: Navigating the paradox of hope and despair in chronic pain. Cult. Med. Psychiatry40, 35–58 (2016).
Google Scholar
Garrard, E. & Wrigley, A. Hope and terminal illness: False hope versus absolute hope. Clin. Ethics4, 38–43 (2009).
Eliott, J. & Olver, I. The discursive properties of “hope”: A qualitative analysis of cancer patients’ speech. Qual. Health Res.12, 173–193 (2002).
Google Scholar
Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.20, 37–46 (1960).
Falotico, R. & Quatto, P. Fleiss’ kappa statistic without paradoxes. Qual. Quant.49, 463–470 (2015).
Hickman, L., Thapa, S., Tay, L., Cao, M. & Srinivasan, P. Text preprocessing for text mining in organizational research: Review and recommendations. Organ. Res. Methods25, 114–146 (2022).
Anandarajan, M. et al. Text preprocessing. Practical text analytics: Maximizing the value of text data 45–59 (2019).
Siino, M., Tinnirello, I. & La Cascia, M. Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on transformers and traditional classifiers. Inf. Syst.121, 102342 (2024).
Koch, B., Denton, E., Hanna, A. & Foster, J. G. Reduced, reused and recycled: The life of a dataset in machine learning research. Proc. Neural Inf. Process. Syst. Track on Datasets Benchmarks 1 (2021).
Bojanowski, P., Grave, É., Joulin, A. & Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist.5, 135–146 (2017).
Umer, M. et al. Impact of convolutional neural network and fasttext embedding on text classification. Multimedia Tools Appl.82, 5569–5585 (2023).
Mohamad, K. & Karaoğlan, K. M. Enhancing deep learning-based sentiment analysis using static and contextual language models. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi12, 712–724 (2023).
Shin, J., Kim, Y., Yoon, S. & Jung, K. Contextual-cnn: A novel architecture capturing unified meaning for sentence classification. In 2018 IEEE international conference on big data and smart computing (BigComp), 491–494 (IEEE, 2018).
Yao, K., Zweig, G., Hwang, M.-Y., Shi, Y. & Yu, D. Recurrent neural networks for language understanding. In Interspeech, 2524–2528 (2013).
Mullis, J., Chen, C., Morkos, B. & Ferguson, S. Deep neural networks in natural language processing for classifying requirements by origin and functionality: An application of BERT in system requirements. J. Mech. Des.146, 041401 (2024).
Karaoglan, K. M. & Findik, O. Enhancing aspect category detection through hybridised contextualised neural language models: A case study in multi-label text classification. Comput. J.67, 2257–2269 (2024).
Karaoğlan, K. M. Novel approaches for fake news detection based on attention-based deep multiple-instance learning using contextualized neural language models. Neurocomputing 602, 128263 (2024).
Sidorov, G., Balouchzahi, F., Butt, S. & Gelbukh, A. Regret and hope on transformers: An analysis of transformers on regret and hope speech detection datasets. Appl. Sci.13, 3983 (2023).
Google Scholar
Balouchzahi, F., Butt, S., Sidorov, G. & Gelbukh, A. Reddit: Regret detection and domain identification from text. Expert Syst. Appl.225, 120099 (2023).
Virtanen, A. et al. Multilingual is not enough: Bert for finnish. arXiv preprint arXiv:1912.07076 (2019).
Merchant, A., Rahimtoroghi, E., Pavlick, E. & Tenney, I. What happens to bert embeddings during fine-tuning? In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, 33–44 (2020).
