Gittings, M. et al. The rage radiation-hydrodynamic code. Comput. Sci. Discov. 1, 015005 (2008).
Fryxell, B. et al. Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273 (2000).
Google Scholar
Marinak, M., Haan, S., Dittrich, T., Tipton, R. & Zimmerman, G. A comparison of three-dimensional multimode hydrodynamic instability growth on various national ignition facility capsule designs with hydra simulations. Phys. Plasmas 5, 1125–1132 (1998).
Google Scholar
Zimmerman, G., Kershaw, D., Bailey, D. & Harte, J. Lasnex code for inertial confinement fusion (Technical Report California University, 1977).
Keller, D. et al. Draco—A new multidimensional hydrocode. In APS Division of Plasma Physics Meeting Abstracts. Vol. 41. BP1–39 (1999).
Haines, B. M. et al. The development of a high-resolution Eulerian radiation-hydrodynamics simulation capability for laser-driven Hohlraums. Phys. Plasmas 29 (2022).
McGlaun, J. M., Thompson, S. & Elrick, M. CTH: A three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990).
Google Scholar
Weseloh, W. N. Pagosa: A multi-dimensional, multi-material parallel hydrodynamics code for material flow and deformation (u) (Technical Report, Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 2011).
Summers, R., Wong, M., Boucheron, E. & Weatherby, J. Alegra–A massively parallel h-adaptive code for solid dynamics. In Technical Report, Sandia National Laboratory (SNL-NM), Albuquerque, NM (United States) (1997).
Abu-Shawareb, H. et al. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett. 129, 075001 (2022).
Google Scholar
Weber, C. et al. Improving ICF implosion performance with alternative capsule supports. Phys. Plasmas 24 (2017).
Gaffney, J. et al. A review of equation-of-state models for inertial confinement fusion materials. High Energy Density Phys. 28, 7–24 (2018).
Google Scholar
Lindl, J. ICF: Recent achievements and perspectives. Il Nuovo Cimento A 1965–1970(106), 1467–1487 (1993).
Google Scholar
Rosen, M. The physics of radiation driven ICF Hohlraums (Tech. Rep., Lawrence Livermore National Lab, 1995).
Lee, S. et al. Effects of parametric uncertainty on multi-scale model predictions of shock response of a pressed energetic material. J. Appl. Phys. 125 (2019).
Rosen, M. D. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial. Phys. Plasmas 6, 1690–1699 (1999).
Google Scholar
Thomas, V. A. & Kares, R. J. Drive asymmetry and the origin of turbulence in an ICF implosion. Phys. Rev. Lett. 109, 075004 (2012).
Google Scholar
Barker, L. & Hollenbach, R. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43, 4669–4675 (1972).
Google Scholar
Malone, R. M. et al. Overview of the line-imaging Visar Diagnostic at the National Ignition Facility (NIF). In International Optical Design Conference, ThA5 (Optica Publishing Group, 2006).
Celliers, P. et al. Line-imaging velocimeter for shock diagnostics at the omega laser facility. Rev. Sci. Instrum. 75, 4916–4929 (2004).
Google Scholar
McCoy, C. A. & Knudson, M. D. Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows. J. Appl. Phys. 122 (2017).
Ahrens, T. J., Gust, W. & Royce, E. Material strength effect in the shock compression of alumina. J. Appl. Phys. 39, 4610–4616 (1968).
Google Scholar
Asay, J. & Lipkin, J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J. Appl. Phys. 49, 4242–4247 (1978).
Google Scholar
Lipkin, J. & Asay, J. Reshock and release of shock-compressed 6061—T6 aluminum. J. Appl. Phys. 48, 182–189 (1977).
Google Scholar
Brown, J., Alexander, C., Asay, J., Vogler, T. & Ding, J. Extracting strength from high pressure ramp-release experiments. J. Appl. Phys. 114 (2013).
Barnes, J. F., Blewett, P. J., McQueen, R. G., Meyer, K. A. & Venable, D. Taylor instability in solids. J. Appl. Phys. 45, 727–732 (1974).
Google Scholar
Colvin, J., Legrand, M., Remington, B., Schurtz, G. & Weber, S. A model for instability growth in accelerated solid metals. J. Appl. Phys. 93, 5287–5301 (2003).
Google Scholar
Barton, N. R. et al. A multiscale strength model for extreme loading conditions. J. Appl. Phys. 109 (2011).
Smith, R. et al. High strain-rate plastic flow in Al and Fe. J. Appl. Phys. 110 (2011).
Piriz, A. R., Cela, J. L., Tahir, N. A. & Hoffmann, D. H. Richtmyer-Meshkov instability in elastic-plastic media. Phys. Rev. E 78, 056401 (2008).
Google Scholar
Piriz, A., Cela, J. L. & Tahir, N. Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Instrum. Methods Phys. Res. Sect. Acc. Spectrom. Detect. Assoc. Equip. 606, 139–141 (2009).
Google Scholar
Dimonte, G. et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107, 264502 (2011).
Google Scholar
Buttler, W. et al. Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84 (2012).
Google Scholar
Ortega, A. L., Lombardini, M., Pullin, D. & Meiron, D. Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E 89, 033018 (2014).
Google Scholar
Mikaelian, K. O. Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E 87, 031003 (2013).
Google Scholar
Plohr, J. N. & Plohr, B. J. Linearized analysis of Richtmyer-Meshkov flow for elastic materials. J. Fluid Mech. 537, 55–89 (2005).
Google Scholar
Prime, M. B. et al. Using Richtmyer–Meshkov instabilities to estimate metal strength at very high rates. In Dynamic Behavior of Materials, Volume 1: Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics. 191–197 (Springer, 2016).
Thomas, V. A. & Kares, R. J. Drive asymmetry, turbulence and ignition failure in high convergence ICF implosions (Tech. Rep. Los Alamos National Laboratory (LANL), 2013).
Weber, C. et al. Mixing in ICF implosions on the national ignition facility caused by the fill-tube. Phys. Plasmas 27 (2020).
Delorme, B. Experimental study of the initial conditions of the Rayleigh-Taylor instability at the ablation front in inertial confinement fusion (Tech. Rep., Universite de Bordeaux, 2015).
Zhou, Y. et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (2019).
Proano, E. S. & Rollin, B. Toward a better understanding of hydrodynamic instabilities in inertial fusion approaches. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Vol. 4676 (2017).
Schaeffer, D. B. et al. Proton imaging of high-energy-density laboratory plasmas. Rev. Mod. Phys. 95, 045007 (2023).
Google Scholar
Strobl, M. et al. Advances in neutron radiography and tomography. J. Phys. D Appl. Phys. 42, 243001 (2009).
Google Scholar
Kozioziemski, B., Bachmann, B., Do, A. & Tommasini, R. X-ray imaging methods for high-energy density physics applications. Rev. Sci. Instrum. 94 (2023).
Endo, T. et al. Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils. Phys. Rev. Lett. 74, 3608 (1995).
Google Scholar
Serino, D. A., Klasky, M. L., Nadiga, B. T., Xu, X. & Wilcox, T. Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks. Opt. Exp. 32, 43366–43386. https://doi.org/10.1364/OE.538495 (2024).
Google Scholar
Zhai, Z., Zou, L., Wu, Q. & Luo, X. Review of experimental Richtmyer-Meshkov instability in shock tube: from simple to complex. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232, 2830–2849 (2018).
Yager-Elorriaga, D. A. et al. Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform. Phys. Plasmas 29 (2022).
Do, A. et al. High spatial resolution and contrast radiography of hydrodynamic instabilities at the national ignition facility. Phys. Plasmas 29 (2022).
Si, T., Long, T., Zhai, Z. & Luo, X. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225–251 (2015).
Google Scholar
Rupert, V. Shock-interface interaction: current research on the Richtmyer-Meshkov problem. In Shock Waves: Proceedings of the 18th International Symposium on Shock Waves, Held at Sendai, Japan 21–26 July 1991. 83–94 (Springer, 1992).
Brouillette, M. The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002).
Google Scholar
Zhou, Y. et al. Rayleigh-Taylor and Richtmyer-Meshkov instabilities: A journey through scales. Phys. D Nonlinear Phenom. 423, 132838 (2021).
Google Scholar
Leinov, E. et al. Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449–475 (2009).
Google Scholar
Holmes, R. L. et al. Richtmyer-Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 55–79 (1999).
Google Scholar
Zhou, Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1–160 (2017).
Google Scholar
Zhang, Q. & Graham, M. J. A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks. Phys. Fluids 10, 974–992 (1998).
Google Scholar
Hossain, M. et al. High-precision inversion of dynamic radiography using hydrodynamic features. Opt. Exp. 30, 14432–14452 (2022).
Google Scholar
Bello-Maldonado, P. D., Kolev, T. V., Rieben, R. N. & Tomov, V. Z. A matrix-free hyperviscosity formulation for high-order ale hydrodynamics. Comput. Fluids 205, 104577 (2020).
Google Scholar
Serino, D. A., Klasky, M., Burby, J. W. & Schei, J. L. Density reconstruction from noisy radiographs using an attention-based transformer network. In Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP), JW2A.4 (Optica Publishing Group, 2023).
Nadiga, B. T. & Klasky, M. L. Degeneracy and deterministic/probabilistic inversions of radiographic data. LA-UR-23-25917 (2023). Sponsor: USDOE National Nuclear Security Administration (NNSA) ; USDOE ; LDRD.
Le Pape, S. et al. Observation of a reflected shock in an indirectly driven spherical implosion at the national ignition facility. Phys. Rev. Lett. 112, 225002 (2014).
Google Scholar
Asch, M., Bocquet, M. & Nodet, M. Data Assimilation: Methods, Algorithms, and Applications (SIAM, 2016).
Smith, D. R. Variational Methods in Optimization (Courier Corporation, 1998).
Cai, Z., Chen, J. & Liu, M. Least-squares relu neural network (lsnn) method for scalar nonlinear hyperbolic conservation law. Appl. Numer. Math. 174, 163–176 (2022).
Google Scholar
Biegler, L. T., Ghattas, O., Heinkenschloss, M. & van Bloemen Waanders, B. Large-scale pde-constrained optimization: An introduction. In Large-Scale PDE-Constrained Optimization. 3–13 (Springer, 2003).
Tran, B. K., Southworth, B. S. & Leok, M. On properties of adjoint systems for evolutionary pdes. J. Nonlinear Sci. 34, 95 (2024).
Google Scholar
Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).
Google Scholar
Cuomo, S. et al. Scientific machine learning through physics-informed neural networks: Where we are and what’s next. J. Sci. Comput. 92, 88 (2022).
Google Scholar
Gaffney, J. A. et al. Data-driven prediction of scaling and ignition of inertial confinement fusion experiments. Phys. Plasmas 31, 092702. https://doi.org/10.1063/5.0215962 (2024). https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0215962/20162047/092702_1_5.0215962.pdf.
Gaffney, J., Clark, D., Sonnad, V. & Libby, S. Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF. Nucl. Fusion 53, 073032. https://doi.org/10.1088/0029-5515/53/7/073032 (2013).
Google Scholar
Hatfield, P. et al. Using sparse gaussian processes for predicting robust inertial confinement fusion implosion yields. IEEE Trans. Plasma Sci. 48, 14–21. https://doi.org/10.1109/TPS.2019.2944416 (2020).
Google Scholar
Wang, J., Chiang, N., Gillette, A. & Peterson, J. L. A multifidelity Bayesian optimization method for inertial confinement fusion design. Phys. Plasmas 31, 032706. https://doi.org/10.1063/5.0191543 (2024). https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0191543/19850210/032706_1_5.0191543.pdf.
Knapp, P. F. & Lewis, W. E. Advanced data analysis in inertial confinement fusion and high energy density physics. Rev. Sci. Instrum. 94, 061103. https://doi.org/10.1063/5.0128661 (2023). https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/5.0128661/17972327/061103_1_5.0128661.pdf.
Gautam, S. et al. Learning robust features for scatter removal and reconstruction in dynamic ICF X-ray tomography. arXiv preprint arXiv:2408.12766 (2024).
Merritt, E. C. et al. Experimental study of energy transfer in double shell implosions. Phys. Plasmas 26, 052702. https://doi.org/10.1063/1.5086674 (2019). https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.5086674/15643290/052702_1_online.pdf.
Hertel, E. S. Jr. & Kerley, G. I. CTH Reference Manual: The Equation of State Package. Report SAND98-0947, Sandia National Laboratories (1998).
van Aarle, W. et al. The ASTRA toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47. https://doi.org/10.1016/j.ultramic.2015.05.002 (2015).
Google Scholar
Trujillo-Pino, A., Krissian, K., Alemán-Flores, M. & Santana-CedrÃs, D. Accurate subpixel edge location based on partial area effect. Image Vis. Comput. 31, 72–90. https://doi.org/10.1016/j.imavis.2012.10.005 (2013).
Tillotson, J. H. Metallic equations of state for hypervelocity impact. General Atomic Report GA-3216. 1962. Technical Report 3216 (1962).
Johnson, J. The sesame database. Tech. Rep. LA-UR-94-1451, Los Alamos National Lab. (LANL) (1994).
Whang, J. et al. Deblurring via stochastic refinement. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 16272–16282. https://doi.org/10.1109/CVPR52688.2022.01581 (2022).
Brock, A., Donahue, J. & Simonyan, K. Large scale GAN training for high fidelity natural image synthesis (2019). arXiv:1809.11096.
Kingma, D. P. & Ba, J. A method for stochastic optimization, Adam, 2017. arXiv:1412.6980.
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013).
Cinelli, L. P., Marins, M. A., Da Silva, E. A. B. & Netto, S. L. Variational Methods for Machine Learning with Applications to Deep Networks (Springer, 2021).
Kingma, D. P., Mohamed, S., Jimenez Rezende, D. & Welling, M. Semi-supervised learning with deep generative models. Adv. Neural Inf. Process. Syst. 27 (2014).
Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (Guyon, I. et al. eds.). Vol. 30 (Curran Associates, Inc., 2017).
