Eshaghi, M., Ghasemi, M. & Khorshidi, K. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech. Lett. 44, 101268 (2021).
Google Scholar
Schaller, S. & Shea, H. Measuring electro-adhesion pressure before and after contact. Sci. Rep. 13, 11768 (2023).
Google Scholar
Xiang, C., Zhiwei, L., Wang, F., Guan, Y. & Zhou, W. A 3D printed flexible electroadhesion gripper. Sens. Actuator A-Phys. 363, 114675 (2023).
Google Scholar
Gao, D. et al. A supramolecular gel-elastomer system for soft iontronic adhesives. Nat. Commun. 14, 1990 (2023).
Google Scholar
Xiang, C., Guan, Y., Zhu, H., Lin, S. & Song, Y. All 3D printed ready-to-use flexible electroadhesion pads. Sens. Actuator A-Phys. 344, 113747 (2022).
Google Scholar
Cacucciolo, V., Shea, H. & Carbone, G. Peeling in electroadhesion soft grippers. Extreme Mech. Lett. 50, 101529 (2021).
Google Scholar
Chen, R. et al. Variable stiffness electroadhesion and compliant electroadhesive grippers. Soft Robot. 9, 1074–1082 (2022).
Google Scholar
Kim, D. G., Je, H., Hart, A. J. & Kim, S. Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping. Friction 11, 1974–1986 (2023).
Google Scholar
Nakamura, T. & Yamamoto, A. Modeling and control of electroadhesion force in DC voltage. Robomech. J. 4, 18 (2017).
Google Scholar
Guo, J., Leng, J. & Rossiter, J. Electroadhesion technologies for robotics: A comprehensive review. IEEE Trans. Robot. 36, 313–327 (2020).
Google Scholar
Cao, C., Gao, X., Guo, J. & Conn, A. De-electroadhesion of flexible and lightweight materials: An experimental study. Appl. Sci. 9, 2796 (2019).
Google Scholar
Guo, J. et al. Soft pneumatic grippers embedded with stretchable electroadhesion. Smart Mater. Struct. 27, 055006 (2018).
Google Scholar
Zhaojia, S., Wang, S., Zhao, Y., Zhong, Z. & Zuo, L. Discriminating soft actuators’ thermal stimuli and mechanical deformation by hydrogel sensors and machine learning. Adv. Intell. Syst. 4, 2200089 (2022).
Google Scholar
Guo, J., Bamber, T., Chamberlain, M., Justham, L. & Jackson, M. Optimization and experimental verification of coplanar interdigital electroadhesives. J. Phys. D-Appl. Phys. 49, 415304 (2016).
Google Scholar
Choi, K. et al. Quantitative electrode design modeling of an electroadhesive lifting device based on the localized charge distribution and interfacial polarization of different objects. ACS Omega 4, 7994–8000 (2019).
Google Scholar
Cao, C. et al. Theoretical model and design of electroadhesive pad with interdigitated electrodes. Mater. Des. 89, 485–491 (2016).
Google Scholar
Guo, J., Hovell, T., Bamber, T., Petzing, J. & Justham, L. Symmetrical electroadhesives independent of different interfacial surface conditions. Appl. Phys. Lett. 111, 221603 (2017).
Google Scholar
Mici, J., Ko, J. W., West, J., Jaquith, J., Lipson. Parallel electrostatic grippers for layered assembly. Addit. Manuf. 27, 451–460 (2019).
West, J. D., Mici, J., Jaquith, J. F. & Lipson, H. Design and optimization of millimeter-scale electroadhesive grippers. J. Phys. D-Appl. Phys. 53(43), 435302 (2020).
Google Scholar
Li, J. et al. Asymmetric strategy for enhanced performance of flexible electroadhesive clutch. Heliyon 9, e12938 (2023).
Google Scholar
Yuan, Y. et al. On variable stiffness of flexible parallel electroadhesive structures. Addit. Manuf. 32, 055004 (2023).
Chiavarella, M., Papangelo, A. A simplified theory of electroadhesion for rough interfaces. Front. Mech. Eng.-Switzerland 6, 00027 (2020).
Luo, A., Zhao, R. R., Bassani, J. L., Hart, A. J. & Turner, K. T. The critical role of fracture in determining the adhesion strength of electroadhesives. Extreme Mech. Lett. 63, 102062 (2023).
Google Scholar
Rajagopalan, P. et al. Advancement of electroadhesion technology for intelligent and self-reliant robotic applications. Adv. Intell. Syst. 4, 2200064 (2022).
Google Scholar
Lim, H., Hwang, G., Kyung, K. & Kim, B. Improved electroadhesive force by using fumed alumina/PDMS composites. Smart Mater. Struct. 30, 035007 (2021).
Google Scholar
Fessl, J., Mach, F. & Navrátil, J. Design, fabrication and testing of electroadhesive interdigital electrodes. Open Phys. 16, 430–434 (2018).
Google Scholar
Deepak Rosario, J. et al. Synergistic effect of impure/pure graphene oxide and TiO2 fillers on the dielectric properties of poly (vinylidene fluoride-hexafluoropropylene) for electroadhesive high load bearing applications. J. Electroceram. 50, 23–36 (2023).
Deepak Rosario, J. et al. Influence of h-BN concentration on the development of PVDF-HFP/TiO2/h-BN nanocomposite films for electroadhesive applications. J. Electron. Mater. 53, 1058–1066 (2024).
Chen, A. S. & Bergbreiter, S. All-polymer electroadhesives to a basic friction model. Smart Mater. Struct. 26, 025028 (2017).
Google Scholar
Akherat, S. M. J. M., Karimi, M. A., Alizadehyazdi, V., Asalzadeh, S. & Spenko, M. A tunable dielectric to improve electrostatic adhesion in electrostatic/microstructured adhesives. J. Electrost. 97, 58–70 (2019).
Google Scholar
Hossain, M. M. Effect of humidity on the breakdown strength and diffusion characteristics of polymer film. Bull. Mat. Sci. 16(6), 699–707 (1993).
Google Scholar
Fimbel, A., Abensur, T., Le, M., Capsal, J. & Cottinet, P. Accurate electroadhesion force measurements of electrostrictive polymers: The case of high performance plasticized terpolymers. Polymers 14, 24 (2022).
Google Scholar
Koh, K. H., Sreekumar, M. & Ponnanmbalam, S. G. Experimental investigation of the effect of the driving voltage of an electroadhesion actuator. Materials 7(7), 4963–4981 (2014).
Google Scholar
Stockinger, T. et al. High porous, ultra-thin paper sensors—An option for successful sensor integration. Sens. Actuator A-Phys. 350, 114098 (2023).
Google Scholar
Sîrbu, I. et al. Electrostatic actuators with constant force at low power loss using matched dielectrics. Nat. Electron. 6(11), 888–899 (2023).
Google Scholar
Zhao, D. Y. et al. Temperature and humidity sensor based on MEMS technology. AIP Adv. 11(8), 085126 (2021).
Google Scholar
Chopra, V., Chudak, M., Hensel, R., Darhuber, A. A., & Arzt, E. Enhancing dry adhesion of polymeric micropatterns by electric fields. ACS Appl. Mater. Interfaces 12(24), 27708–27716.
Guo, J. et al. Experimental study of a flexible and environmentally stable electroadhesive device. Appl. Phys. Lett. 111, 251603 (2017).
Google Scholar
Guo, J. et al. Investigation of relationship between interfacial electroadhesive force and surface texture. J. Phys. D-Appl. Phys. 49(3), 035303 (2016).
Google Scholar
Persson, B. N. J. & Guo, J. Electroadhesion for soft adhesive pads and robotics: theory and numerical results. Soft Matter 15(40), 8032–8039 (2019).
Google Scholar
Bigharaz, M., Shenkel, T. & Bingham, P. A. Increasing force generation in electroadhesive devices through modelling of novel electrode geometries. J. Electrost. 109, 103540 (2021).
Google Scholar
Kong, Y. & Yu, T. A deep neural network model using random forest to extract feature representation for gene expression data classification. Sci. Rep. 8, 16477 (2018).
Google Scholar
Hwang, G., Park, J., Cortes, D. S. D., Hyeon, K. & Kyung, K. Electroadhesion-based high-payload soft gripper with mechanically strengthened structure. IEEE Trans. Ind. Electron. 69, 642–651 (2022).
Google Scholar
Persson, B. N. J. General theory of electroadhesion. J. Phys. Condes. Matter, 33, 435001 (2021).
Guo, J., Xiang, C. & Rossiter, J. Electrically controllable connection and power transfer by electroadhesion. Smart Mater. Struct. 28, 105012 (2019).
Google Scholar
Xu, L. et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12, 10262–10271 (2018).
Google Scholar
Kalus, W., Lagi, Ł & Zygarlicki, J. Analysis of potential of raising forces acting on electroadhesive pads depending on polarization and supply parameter. Energies 14, 2517 (2021).
Google Scholar
Piskarev, Y. et al. A soft gripper with granular jamming and electroadhesive properties. Adv. Intell. Syst. 5, 202200409 (2023).
Google Scholar
Mastrangelo, M., Caruso, F., Carbone, G. & Cacucciolo, V. Electroadhesion zipping with soft grippers on curved objects. Extreme Mech. Lett. 61, 101999 (2023).
Google Scholar
Levine, D. J. et al. A low-voltage, high-force capacity electroadhesive clutch based on ionoelastomer heterojunctions. Adv. Mater. 35, 2304455 (2023).
Google Scholar
Wang, W. et al. Automated pipeline for superalloy data by text mining. NPJ Comput. Mater. 8, 9 (2022).
Stocker, S., Csányi, G., Reuter, K. & Margra, J. T. Machine learning in chemical reaction space. Nat. Commun. 11, 5505 (2020).
Google Scholar
Ngoc, L. V., Huang, C. Y., Cassidy, C. J., Medrano, C. & Kadonaga, J. T. Identification of the human DPR core promoter element using machine learning. Nature 585, 459–463 (2020).
Google Scholar
Zhang, X. et al. Machine learning modeling based on microbial community for prediction of natural attenuation in groundwater. Environ. Sci. Technol. 57, 21212–21223 (2023).
Google Scholar
Liu, R., Liu, R., & Shen, H. Modeling and analysis of electric field and electrostatic adhesion force generated by interdigital electrodes for wall climbing robots. In IEEE Int. Conf. on Intelligent Robots and Systems pp 2327–32 (Tokyo, 3–7 November 2013).
Mao, J., Qin, L., Zhang, W., Xie, L. & Wang, W. Modeling and analysis of electrostatic adhesion force for climbing robot on dielectric wall materials. Eur. Phys. J. Appl. Phys. 69, 11003 (2015).
Google Scholar
