Superior electroadhesion force with permittivity-engineered bilayer films using electrostatic simulation and machine learning approaches

Machine Learning


  • Eshaghi, M., Ghasemi, M. & Khorshidi, K. Design, manufacturing and applications of small-scale magnetic soft robots. Extreme Mech. Lett. 44, 101268 (2021).

    Article 

    Google Scholar 

  • Schaller, S. & Shea, H. Measuring electro-adhesion pressure before and after contact. Sci. Rep. 13, 11768 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, C., Zhiwei, L., Wang, F., Guan, Y. & Zhou, W. A 3D printed flexible electroadhesion gripper. Sens. Actuator A-Phys. 363, 114675 (2023).

    Article 
    CAS 

    Google Scholar 

  • Gao, D. et al. A supramolecular gel-elastomer system for soft iontronic adhesives. Nat. Commun. 14, 1990 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiang, C., Guan, Y., Zhu, H., Lin, S. & Song, Y. All 3D printed ready-to-use flexible electroadhesion pads. Sens. Actuator A-Phys. 344, 113747 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cacucciolo, V., Shea, H. & Carbone, G. Peeling in electroadhesion soft grippers. Extreme Mech. Lett. 50, 101529 (2021).

    Article 

    Google Scholar 

  • Chen, R. et al. Variable stiffness electroadhesion and compliant electroadhesive grippers. Soft Robot. 9, 1074–1082 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Kim, D. G., Je, H., Hart, A. J. & Kim, S. Additive manufacturing of flexible 3D surface electrodes for electrostatic adhesion control and smart robotic gripping. Friction 11, 1974–1986 (2023).

    Article 

    Google Scholar 

  • Nakamura, T. & Yamamoto, A. Modeling and control of electroadhesion force in DC voltage. Robomech. J. 4, 18 (2017).

    Article 

    Google Scholar 

  • Guo, J., Leng, J. & Rossiter, J. Electroadhesion technologies for robotics: A comprehensive review. IEEE Trans. Robot. 36, 313–327 (2020).

    Article 

    Google Scholar 

  • Cao, C., Gao, X., Guo, J. & Conn, A. De-electroadhesion of flexible and lightweight materials: An experimental study. Appl. Sci. 9, 2796 (2019).

    Article 

    Google Scholar 

  • Guo, J. et al. Soft pneumatic grippers embedded with stretchable electroadhesion. Smart Mater. Struct. 27, 055006 (2018).

    Article 
    ADS 

    Google Scholar 

  • Zhaojia, S., Wang, S., Zhao, Y., Zhong, Z. & Zuo, L. Discriminating soft actuators’ thermal stimuli and mechanical deformation by hydrogel sensors and machine learning. Adv. Intell. Syst. 4, 2200089 (2022).

    Article 

    Google Scholar 

  • Guo, J., Bamber, T., Chamberlain, M., Justham, L. & Jackson, M. Optimization and experimental verification of coplanar interdigital electroadhesives. J. Phys. D-Appl. Phys. 49, 415304 (2016).

    Article 
    ADS 

    Google Scholar 

  • Choi, K. et al. Quantitative electrode design modeling of an electroadhesive lifting device based on the localized charge distribution and interfacial polarization of different objects. ACS Omega 4, 7994–8000 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, C. et al. Theoretical model and design of electroadhesive pad with interdigitated electrodes. Mater. Des. 89, 485–491 (2016).

    Article 

    Google Scholar 

  • Guo, J., Hovell, T., Bamber, T., Petzing, J. & Justham, L. Symmetrical electroadhesives independent of different interfacial surface conditions. Appl. Phys. Lett. 111, 221603 (2017).

    Article 
    ADS 

    Google Scholar 

  • Mici, J., Ko, J. W., West, J., Jaquith, J., Lipson. Parallel electrostatic grippers for layered assembly. Addit. Manuf. 27, 451–460 (2019).

  • West, J. D., Mici, J., Jaquith, J. F. & Lipson, H. Design and optimization of millimeter-scale electroadhesive grippers. J. Phys. D-Appl. Phys. 53(43), 435302 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Li, J. et al. Asymmetric strategy for enhanced performance of flexible electroadhesive clutch. Heliyon 9, e12938 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Y. et al. On variable stiffness of flexible parallel electroadhesive structures. Addit. Manuf. 32, 055004 (2023).

    Google Scholar 

  • Chiavarella, M., Papangelo, A. A simplified theory of electroadhesion for rough interfaces. Front. Mech. Eng.-Switzerland 6, 00027 (2020).

  • Luo, A., Zhao, R. R., Bassani, J. L., Hart, A. J. & Turner, K. T. The critical role of fracture in determining the adhesion strength of electroadhesives. Extreme Mech. Lett. 63, 102062 (2023).

    Article 

    Google Scholar 

  • Rajagopalan, P. et al. Advancement of electroadhesion technology for intelligent and self-reliant robotic applications. Adv. Intell. Syst. 4, 2200064 (2022).

    Article 

    Google Scholar 

  • Lim, H., Hwang, G., Kyung, K. & Kim, B. Improved electroadhesive force by using fumed alumina/PDMS composites. Smart Mater. Struct. 30, 035007 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Fessl, J., Mach, F. & Navrátil, J. Design, fabrication and testing of electroadhesive interdigital electrodes. Open Phys. 16, 430–434 (2018).

    Article 
    CAS 

    Google Scholar 

  • Deepak Rosario, J. et al. Synergistic effect of impure/pure graphene oxide and TiO2 fillers on the dielectric properties of poly (vinylidene fluoride-hexafluoropropylene) for electroadhesive high load bearing applications. J. Electroceram. 50, 23–36 (2023).

  • Deepak Rosario, J. et al. Influence of h-BN concentration on the development of PVDF-HFP/TiO2/h-BN nanocomposite films for electroadhesive applications. J. Electron. Mater. 53, 1058–1066 (2024).

  • Chen, A. S. & Bergbreiter, S. All-polymer electroadhesives to a basic friction model. Smart Mater. Struct. 26, 025028 (2017).

    Article 
    ADS 

    Google Scholar 

  • Akherat, S. M. J. M., Karimi, M. A., Alizadehyazdi, V., Asalzadeh, S. & Spenko, M. A tunable dielectric to improve electrostatic adhesion in electrostatic/microstructured adhesives. J. Electrost. 97, 58–70 (2019).

    Article 

    Google Scholar 

  • Hossain, M. M. Effect of humidity on the breakdown strength and diffusion characteristics of polymer film. Bull. Mat. Sci. 16(6), 699–707 (1993).

    Article 
    CAS 

    Google Scholar 

  • Fimbel, A., Abensur, T., Le, M., Capsal, J. & Cottinet, P. Accurate electroadhesion force measurements of electrostrictive polymers: The case of high performance plasticized terpolymers. Polymers 14, 24 (2022).

    Article 
    CAS 

    Google Scholar 

  • Koh, K. H., Sreekumar, M. & Ponnanmbalam, S. G. Experimental investigation of the effect of the driving voltage of an electroadhesion actuator. Materials 7(7), 4963–4981 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stockinger, T. et al. High porous, ultra-thin paper sensors—An option for successful sensor integration. Sens. Actuator A-Phys. 350, 114098 (2023).

    Article 
    CAS 

    Google Scholar 

  • Sîrbu, I. et al. Electrostatic actuators with constant force at low power loss using matched dielectrics. Nat. Electron. 6(11), 888–899 (2023).

    Article 

    Google Scholar 

  • Zhao, D. Y. et al. Temperature and humidity sensor based on MEMS technology. AIP Adv. 11(8), 085126 (2021).

    Article 
    ADS 

    Google Scholar 

  • Chopra, V., Chudak, M., Hensel, R., Darhuber, A. A., & Arzt, E. Enhancing dry adhesion of polymeric micropatterns by electric fields. ACS Appl. Mater. Interfaces 12(24), 27708–27716.

  • Guo, J. et al. Experimental study of a flexible and environmentally stable electroadhesive device. Appl. Phys. Lett. 111, 251603 (2017).

    Article 
    ADS 

    Google Scholar 

  • Guo, J. et al. Investigation of relationship between interfacial electroadhesive force and surface texture. J. Phys. D-Appl. Phys. 49(3), 035303 (2016).

    Article 
    ADS 

    Google Scholar 

  • Persson, B. N. J. & Guo, J. Electroadhesion for soft adhesive pads and robotics: theory and numerical results. Soft Matter 15(40), 8032–8039 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bigharaz, M., Shenkel, T. & Bingham, P. A. Increasing force generation in electroadhesive devices through modelling of novel electrode geometries. J. Electrost. 109, 103540 (2021).

    Article 

    Google Scholar 

  • Kong, Y. & Yu, T. A deep neural network model using random forest to extract feature representation for gene expression data classification. Sci. Rep. 8, 16477 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hwang, G., Park, J., Cortes, D. S. D., Hyeon, K. & Kyung, K. Electroadhesion-based high-payload soft gripper with mechanically strengthened structure. IEEE Trans. Ind. Electron. 69, 642–651 (2022).

    Article 

    Google Scholar 

  • Persson, B. N. J. General theory of electroadhesion. J. Phys. Condes. Matter, 33, 435001 (2021).

  • Guo, J., Xiang, C. & Rossiter, J. Electrically controllable connection and power transfer by electroadhesion. Smart Mater. Struct. 28, 105012 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Xu, L. et al. Giant voltage enhancement via triboelectric charge supplement channel for self-powered electroadhesion. ACS Nano 12, 10262–10271 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kalus, W., Lagi, Ł & Zygarlicki, J. Analysis of potential of raising forces acting on electroadhesive pads depending on polarization and supply parameter. Energies 14, 2517 (2021).

    Article 
    CAS 

    Google Scholar 

  • Piskarev, Y. et al. A soft gripper with granular jamming and electroadhesive properties. Adv. Intell. Syst. 5, 202200409 (2023).

    Article 

    Google Scholar 

  • Mastrangelo, M., Caruso, F., Carbone, G. & Cacucciolo, V. Electroadhesion zipping with soft grippers on curved objects. Extreme Mech. Lett. 61, 101999 (2023).

    Article 

    Google Scholar 

  • Levine, D. J. et al. A low-voltage, high-force capacity electroadhesive clutch based on ionoelastomer heterojunctions. Adv. Mater. 35, 2304455 (2023).

    Article 
    CAS 

    Google Scholar 

  • Wang, W. et al. Automated pipeline for superalloy data by text mining. NPJ Comput. Mater. 8, 9 (2022).

  • Stocker, S., Csányi, G., Reuter, K. & Margra, J. T. Machine learning in chemical reaction space. Nat. Commun. 11, 5505 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ngoc, L. V., Huang, C. Y., Cassidy, C. J., Medrano, C. & Kadonaga, J. T. Identification of the human DPR core promoter element using machine learning. Nature 585, 459–463 (2020).

    Article 
    ADS 

    Google Scholar 

  • Zhang, X. et al. Machine learning modeling based on microbial community for prediction of natural attenuation in groundwater. Environ. Sci. Technol. 57, 21212–21223 (2023).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, R., Liu, R., & Shen, H. Modeling and analysis of electric field and electrostatic adhesion force generated by interdigital electrodes for wall climbing robots. In IEEE Int. Conf. on Intelligent Robots and Systems pp 2327–32 (Tokyo, 3–7 November 2013).

  • Mao, J., Qin, L., Zhang, W., Xie, L. & Wang, W. Modeling and analysis of electrostatic adhesion force for climbing robot on dielectric wall materials. Eur. Phys. J. Appl. Phys. 69, 11003 (2015).

    Article 
    ADS 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *