Predicting outcomes following endovascular aortoiliac revascularization using machine learning

Machine Learning


  • Fowkes, F. G. R. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet Lond. Engl. 382, 1329–1340 (2013).

    Google Scholar 

  • Agnelli, G., Belch, J. J. F., Baumgartner, I., Giovas, P. & Hoffmann, U. Morbidity and mortality associated with atherosclerotic peripheral artery disease: a systematic review. Atherosclerosis 293, 94–100 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kim, M., Kim, Y., Ryu, G. W. & Choi, M. Functional status and health-related quality of life in patients with peripheral artery disease: a cross-sectional study. Int. J. Environ. Res. Public. Health 18, 10941 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kohn, C. G., Alberts, M. J., Peacock, W. F., Bunz, T. J. & Coleman, C. I. Cost and inpatient burden of peripheral artery disease: findings from the National Inpatient Sample. Atherosclerosis 286, 142–146 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Heaton, J. & Khan, Y. S. Aortoiliac Occlusive Disease. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022).

  • Beckman, J. A., Schneider, P. A. & Conte, M. S. Advances in revascularization for peripheral artery disease: revascularization in PAD. Circ. Res. 128, 1885–1912 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Topfer, L.-A. & Spry, C. New technologies for the treatment of peripheral artery disease. in CADTH Issues in Emerging Health Technologies (Canadian Agency for Drugs and Technologies in Health, Ottawa (ON), 2016).

  • Jongkind, V., Akkersdijk, G. J. M., Yeung, K. K. & Wisselink, W. A systematic review of endovascular treatment of extensive aortoiliac occlusive disease. J. Vasc. Surg. 52, 1376–1383 (2010).

    PubMed 

    Google Scholar 

  • Conte, M. S. et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 69, 3S–125S.e40 (2019).

    PubMed 

    Google Scholar 

  • Bertges, D. J. et al. The Vascular Quality Initiative Cardiac Risk Index for prediction of myocardial infarction after vascular surgery. J. Vasc. Surg. 64, 1411–1421.e4 (2016).

    PubMed 

    Google Scholar 

  • Bilimoria, K. Y. et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 217, 833–842 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, V. et al. Adoption of clinical risk prediction tools is limited by a lack of integration with electronic health records. BMJ Health Care Inf. 28, e100253 (2021).

    Google Scholar 

  • Baştanlar, Y. & Özuysal, M. Introduction to machine learning. Methods Mol. Biol. 1107, 105–128 (2014).

    PubMed 

    Google Scholar 

  • Ngiam, K. Y. & Khor, I. W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 20, e262–e273 (2019).

    PubMed 

    Google Scholar 

  • Liew, B. X. W., Kovacs, F. M., Rügamer, D. & Royuela, A. Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 31, 2082–2091 (2022).

    Google Scholar 

  • Li, B. et al. Predicting outcomes following open revascularization for aortoiliac occlusive disease using machine learning. J. Vasc. Surg. S0741-5214(23)01614–2 https://doi.org/10.1016/j.jvs.2023.07.006 (2023).

  • Bonde, A. et al. Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. Lancet Digit. Health 3, e471–e485 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Hers, T. M. et al. Inaccurate risk assessment by the ACS NSQIP risk calculator in aortic surgery. J. Clin. Med. 10, 5426 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonaca, M. P. et al. Rivaroxaban in peripheral artery disease after revascularization. N. Engl. J. Med. 382, 1994–2004 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Conte, M. S. et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J. Vasc. Surg. 61, 2S–41S.e1 (2015).

    PubMed 

    Google Scholar 

  • Gerhard-Herman, M. D. et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135, e686–e725 (2017).

    PubMed 

    Google Scholar 

  • Aboyans, V. et al. Editor’s Choice – 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. J. Eur. Soc. Vasc. Surg. 55, 305–368 (2018).

    Google Scholar 

  • Farber, A. et al. Surgery or endovascular therapy for chronic limb-threatening ischemia. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2207899 (2022).

  • Farber, A. Chronic limb-threatening ischemia. N. Engl. J. Med. 379, 171–180 (2018).

    PubMed 

    Google Scholar 

  • Stewart, A. L. et al. Functional status and well-being of patients with chronic conditions. Results from the medical outcomes study. JAMA 262, 907–913 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Shaydakov, M. E. & Tuma, F. Operative Risk. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022).

  • Stoltzfus, J. C. Logistic regression: a brief primer. Acad. Emerg. Med. J. Soc. Acad. Emerg. Med. 18, 1099–1104 (2011).

    Google Scholar 

  • Kia, B. et al. Nonlinear dynamics based machine learning: Utilizing dynamics-based flexibility of nonlinear circuits to implement different functions. PloS One 15, e0228534 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee, P., Cymberknop, L. J. & Armentano, R. L. Nonlinear systems in healthcare towards intelligent disease prediction. Nonlinear Syst. Theor. Asp. Recent Appl. 1, e88163 (2019).

    Google Scholar 

  • Ravaut, M. et al. Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data. Npj Digit. Med. 4, 1–12 (2021).

    Google Scholar 

  • Wang, R., Zhang, J., Shan, B., He, M. & Xu, J. XGBoost machine learning algorithm for prediction of outcome in aneurysmal subarachnoid hemorrhage. Neuropsychiatr. Dis. Treat. 18, 659–667 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, Z.-G., Yang, S.-Q., Lv, C.-X., An, S.-Y. & Wu, W. Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study. BMJ Open 12, e056685 (2022).

    PubMed 

    Google Scholar 

  • Viljanen, M., Meijerink, L., Zwakhals, L. & van de Kassteele, J. A machine learning approach to small area estimation: predicting the health, housing and well-being of the population of Netherlands. Int. J. Health Geogr. 21, 4 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shin, S. et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail 8, 106–115 (2021).

    PubMed 

    Google Scholar 

  • Cho, S. M. et al. Machine learning compared with conventional statistical models for predicting myocardial infarction readmission and mortality: a systematic review. Can. J. Cardiol. 37, 1207–1214 (2021).

    PubMed 

    Google Scholar 

  • Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178, 1544–1547 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazmudar, A., Vitello, D., Chapman, M., Tomlinson, J. S. & Bentrem, D. J. Gender as a risk factor for adverse intraoperative and postoperative outcomes of elective pancreatectomy. J. Surg. Oncol. 115, 131–136 (2017).

    PubMed 

    Google Scholar 

  • Halsey, J. N., Asti, L. & Kirschner, R. E. The impact of race and ethnicity on surgical risk and outcomes following palatoplasty: an analysis of the NSQIP pediatric database. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 10556656221078154 https://doi.org/10.1177/10556656221078154 (2022).

  • Rümenapf, G., Morbach, S., Schmidt, A. & Sigl, M. Intermittent claudication and asymptomatic peripheral arterial disease. Dtsch. Ärztebl. Int. 117, 188–193 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bevan, G. H. & White Solaru, K. T. Evidence-based medical management of peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 40, 541–553 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Barrows, R. J., Krumsdorf, U., Zankl, A., Katus, H. & Tiefenbacher, C. P. Significance of close surveillance of patients with peripheral arterial disease. Angiology 60, 462–467 (2009).

    PubMed 

    Google Scholar 

  • Paulus, N., Jacobs, M. & Greiner, A. Primary and secondary amputation in critical limb ischemia patients: different aspects. Acta Chir. Belg. 112, 251–254 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • O’Connor, D. B. et al. An anaesthetic pre-operative assessment clinic reduces pre-operative inpatient stay in patients requiring major vascular surgery. Ir. J. Med. Sci. 180, 649–653 (2011).

    PubMed 

    Google Scholar 

  • Davis, F. M. et al. The clinical impact of cardiology consultation prior to major vascular surgery. Ann. Surg. 267, 189–195 (2018).

    PubMed 

    Google Scholar 

  • Premaratne, S., Newman, J., Hobbs, S., Garnham, A. & Wall, M. Meta-analysis of direct surgical versus endovascular revascularization for aortoiliac occlusive disease. J. Vasc. Surg. 72, 726–737 (2020).

    PubMed 

    Google Scholar 

  • Gillies, M. A. et al. Intensive care utilization and outcomes after high-risk surgery in Scotland: a population-based cohort study. Br. J. Anaesth. 118, 123–131 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Patel, P. R. & Bechmann, S. Discharge Planning. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022).

  • Nguyen, L. L. & Barshes, N. R. Analysis of large databases in vascular surgery. J. Vasc. Surg. 52, 768–774 (2010).

    PubMed 

    Google Scholar 

  • Northridge, M. E. & Metcalf, S. S. Enhancing implementation science by applying best principles of systems science. Health Res. Policy Syst. 14, 74 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Batko, K. & Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 9, 3 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, G. S. et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 385, e078378 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • ACS NSQIP. ACS https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/.

  • Shiloach, M. et al. Toward robust information: data quality and inter-rater reliability in the American College of Surgeons National Surgical Quality Improvement Program. J. Am. Coll. Surg. 210, 6–16 (2010).

    PubMed 

    Google Scholar 

  • Cohen, M. E. et al. Optimizing ACS NSQIP modeling for evaluation of surgical quality and risk: patient risk adjustment, procedure mix adjustment, shrinkage adjustment, and surgical focus. J. Am. Coll. Surg. 217, 336–346.e1 (2013).

    PubMed 

    Google Scholar 

  • Stoner, M. C. et al. Reporting standards of the Society for Vascular Surgery for endovascular treatment of chronic lower extremity peripheral artery disease. J. Vasc. Surg. 64, e1–e21 (2016).

    PubMed 

    Google Scholar 

  • ACS NSQIP Participant Use Data File. ACS https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/participant-use-data-file/.

  • Elfanagely, O. et al. Machine learning and surgical outcomes prediction: a systematic review. J. Surg. Res. 264, 346–361 (2021).

    PubMed 

    Google Scholar 

  • Bektaş, M., Tuynman, J. B., Costa Pereira, J., Burchell, G. L. & van der Peet, D. L. Machine learning algorithms for predicting surgical outcomes after colorectal surgery: a systematic review. World J. Surg. https://doi.org/10.1007/s00268-022-06728-1 (2022).

  • Senders, J. T. et al. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. 109, 476–486.e1 (2018).

    PubMed 

    Google Scholar 

  • Shipe, M. E., Deppen, S. A., Farjah, F. & Grogan, E. L. Developing prediction models for clinical use using logistic regression: an overview. J. Thorac. Dis. 11, S574–S584 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dobbin, K. K. & Simon, R. M. Optimally splitting cases for training and testing high dimensional classifiers. BMC Med. Genom.4, 31 (2011).

    Google Scholar 

  • Jung, Y. & Hu, J. A K-fold averaging cross-validation procedure. J. Nonparametr. Stat. 27, 167–179 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Adnan, M., Alarood, A. A. S., Uddin, M. I. & Ur Rehman, I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8, e803 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wibowo, P. & Fatichah, C. Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of COVID-19. J. King Saud. Univ. Comput. Inf. Sci. 34, 7830–7839 (2022).

    PubMed 

    Google Scholar 

  • Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 4, 627–635 (2013).

    Google Scholar 

  • Redelmeier, D. A., Bloch, D. A. & Hickam, D. H. Assessing predictive accuracy: how to compare Brier scores. J. Clin. Epidemiol. 44, 1141–1146 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Loh, W.-Y. & Zhou, P. Variable importance scores. J. Data Sci. 19, 569–592 (2021).

    Google Scholar 

  • Riley, R. D. et al. Calculating the sample size required for developing a clinical prediction model. BMJ m441 https://doi.org/10.1136/bmj.m441 (2020).

  • Ensor, J. pmsampsize: Sample Size for Development of a Prediction Model. The Comprehensive R Archive Network https://cran.r-project.org/package=pmsampsize (2023).

  • Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 64, 402–406 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Groenwold, R. H. H. et al. Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis. CMAJ Can. Med. Assoc. J. 184, 1265–1269 (2012).

    Google Scholar 

  • Hughes, R. A., Heron, J., Sterne, J. A. C. & Tilling, K. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. Int. J. Epidemiol. 48, 1294–1304 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Download R-4.3.0 for Windows. The R-project for statistical computing. https://cran.r-project.org/bin/windows/base/.

  • Kuhn, M. et al. caret: Classification and Regression Training. The Comprehensive R Archive Network https://CRAN.R-project.org/package=caret (2024).

  • Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. KDD 16, 785–794 (2016).

    Google Scholar 

  • Wright, M. N., Wager, S. & Probst, P. ranger: A Fast Implementation of Random Forests. The Comprehensive R Archive Network https://cran.r-project.org/package=ranger (2024).

  • naivebayes: High Performance Implementation of the Naive Bayes Algorithm version 0.9.7 from CRAN. https://rdrr.io/cran/naivebayes/.

  • https://www.rdocumentation.org/packages/e1071/versions/1.7-11/topics/svm svm function – RDocumentation.

  • Ripley, B. & Venables, W. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. The Comprehensive R Archive Network https://CRAN.R-project.org/package=nnet (2025).

  • Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *