Fowkes, F. G. R. et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet Lond. Engl. 382, 1329–1340 (2013).
Agnelli, G., Belch, J. J. F., Baumgartner, I., Giovas, P. & Hoffmann, U. Morbidity and mortality associated with atherosclerotic peripheral artery disease: a systematic review. Atherosclerosis 293, 94–100 (2020).
Google Scholar
Kim, M., Kim, Y., Ryu, G. W. & Choi, M. Functional status and health-related quality of life in patients with peripheral artery disease: a cross-sectional study. Int. J. Environ. Res. Public. Health 18, 10941 (2021).
Google Scholar
Kohn, C. G., Alberts, M. J., Peacock, W. F., Bunz, T. J. & Coleman, C. I. Cost and inpatient burden of peripheral artery disease: findings from the National Inpatient Sample. Atherosclerosis 286, 142–146 (2019).
Google Scholar
Heaton, J. & Khan, Y. S. Aortoiliac Occlusive Disease. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022).
Beckman, J. A., Schneider, P. A. & Conte, M. S. Advances in revascularization for peripheral artery disease: revascularization in PAD. Circ. Res. 128, 1885–1912 (2021).
Google Scholar
Topfer, L.-A. & Spry, C. New technologies for the treatment of peripheral artery disease. in CADTH Issues in Emerging Health Technologies (Canadian Agency for Drugs and Technologies in Health, Ottawa (ON), 2016).
Jongkind, V., Akkersdijk, G. J. M., Yeung, K. K. & Wisselink, W. A systematic review of endovascular treatment of extensive aortoiliac occlusive disease. J. Vasc. Surg. 52, 1376–1383 (2010).
Google Scholar
Conte, M. S. et al. Global vascular guidelines on the management of chronic limb-threatening ischemia. J. Vasc. Surg. 69, 3S–125S.e40 (2019).
Google Scholar
Bertges, D. J. et al. The Vascular Quality Initiative Cardiac Risk Index for prediction of myocardial infarction after vascular surgery. J. Vasc. Surg. 64, 1411–1421.e4 (2016).
Google Scholar
Bilimoria, K. Y. et al. Development and evaluation of the universal ACS NSQIP surgical risk calculator: a decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 217, 833–842 (2013).
Google Scholar
Sharma, V. et al. Adoption of clinical risk prediction tools is limited by a lack of integration with electronic health records. BMJ Health Care Inf. 28, e100253 (2021).
Baştanlar, Y. & Özuysal, M. Introduction to machine learning. Methods Mol. Biol. 1107, 105–128 (2014).
Google Scholar
Ngiam, K. Y. & Khor, I. W. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 20, e262–e273 (2019).
Google Scholar
Liew, B. X. W., Kovacs, F. M., Rügamer, D. & Royuela, A. Machine learning versus logistic regression for prognostic modelling in individuals with non-specific neck pain. Eur. Spine J. Off. Publ. Eur. Spine Soc. Eur. Spinal Deform. Soc. Eur. Sect. Cerv. Spine Res. Soc. 31, 2082–2091 (2022).
Li, B. et al. Predicting outcomes following open revascularization for aortoiliac occlusive disease using machine learning. J. Vasc. Surg. S0741-5214(23)01614–2 https://doi.org/10.1016/j.jvs.2023.07.006 (2023).
Bonde, A. et al. Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study. Lancet Digit. Health 3, e471–e485 (2021).
Google Scholar
Hers, T. M. et al. Inaccurate risk assessment by the ACS NSQIP risk calculator in aortic surgery. J. Clin. Med. 10, 5426 (2021).
Google Scholar
Bonaca, M. P. et al. Rivaroxaban in peripheral artery disease after revascularization. N. Engl. J. Med. 382, 1994–2004 (2020).
Google Scholar
Conte, M. S. et al. Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J. Vasc. Surg. 61, 2S–41S.e1 (2015).
Google Scholar
Gerhard-Herman, M. D. et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135, e686–e725 (2017).
Google Scholar
Aboyans, V. et al. Editor’s Choice – 2017 ESC guidelines on the diagnosis and treatment of peripheral arterial diseases, in collaboration with the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. J. Eur. Soc. Vasc. Surg. 55, 305–368 (2018).
Farber, A. et al. Surgery or endovascular therapy for chronic limb-threatening ischemia. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2207899 (2022).
Farber, A. Chronic limb-threatening ischemia. N. Engl. J. Med. 379, 171–180 (2018).
Google Scholar
Stewart, A. L. et al. Functional status and well-being of patients with chronic conditions. Results from the medical outcomes study. JAMA 262, 907–913 (1989).
Google Scholar
Shaydakov, M. E. & Tuma, F. Operative Risk. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022).
Stoltzfus, J. C. Logistic regression: a brief primer. Acad. Emerg. Med. J. Soc. Acad. Emerg. Med. 18, 1099–1104 (2011).
Kia, B. et al. Nonlinear dynamics based machine learning: Utilizing dynamics-based flexibility of nonlinear circuits to implement different functions. PloS One 15, e0228534 (2020).
Google Scholar
Chatterjee, P., Cymberknop, L. J. & Armentano, R. L. Nonlinear systems in healthcare towards intelligent disease prediction. Nonlinear Syst. Theor. Asp. Recent Appl. 1, e88163 (2019).
Ravaut, M. et al. Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data. Npj Digit. Med. 4, 1–12 (2021).
Wang, R., Zhang, J., Shan, B., He, M. & Xu, J. XGBoost machine learning algorithm for prediction of outcome in aneurysmal subarachnoid hemorrhage. Neuropsychiatr. Dis. Treat. 18, 659–667 (2022).
Google Scholar
Fang, Z.-G., Yang, S.-Q., Lv, C.-X., An, S.-Y. & Wu, W. Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: a time-series study. BMJ Open 12, e056685 (2022).
Google Scholar
Viljanen, M., Meijerink, L., Zwakhals, L. & van de Kassteele, J. A machine learning approach to small area estimation: predicting the health, housing and well-being of the population of Netherlands. Int. J. Health Geogr. 21, 4 (2022).
Google Scholar
Shin, S. et al. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality. ESC Heart Fail 8, 106–115 (2021).
Google Scholar
Cho, S. M. et al. Machine learning compared with conventional statistical models for predicting myocardial infarction readmission and mortality: a systematic review. Can. J. Cardiol. 37, 1207–1214 (2021).
Google Scholar
Gianfrancesco, M. A., Tamang, S., Yazdany, J. & Schmajuk, G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern. Med. 178, 1544–1547 (2018).
Google Scholar
Mazmudar, A., Vitello, D., Chapman, M., Tomlinson, J. S. & Bentrem, D. J. Gender as a risk factor for adverse intraoperative and postoperative outcomes of elective pancreatectomy. J. Surg. Oncol. 115, 131–136 (2017).
Google Scholar
Halsey, J. N., Asti, L. & Kirschner, R. E. The impact of race and ethnicity on surgical risk and outcomes following palatoplasty: an analysis of the NSQIP pediatric database. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 10556656221078154 https://doi.org/10.1177/10556656221078154 (2022).
Rümenapf, G., Morbach, S., Schmidt, A. & Sigl, M. Intermittent claudication and asymptomatic peripheral arterial disease. Dtsch. Ärztebl. Int. 117, 188–193 (2020).
Google Scholar
Bevan, G. H. & White Solaru, K. T. Evidence-based medical management of peripheral artery disease. Arterioscler. Thromb. Vasc. Biol. 40, 541–553 (2020).
Google Scholar
Barrows, R. J., Krumsdorf, U., Zankl, A., Katus, H. & Tiefenbacher, C. P. Significance of close surveillance of patients with peripheral arterial disease. Angiology 60, 462–467 (2009).
Google Scholar
Paulus, N., Jacobs, M. & Greiner, A. Primary and secondary amputation in critical limb ischemia patients: different aspects. Acta Chir. Belg. 112, 251–254 (2012).
Google Scholar
O’Connor, D. B. et al. An anaesthetic pre-operative assessment clinic reduces pre-operative inpatient stay in patients requiring major vascular surgery. Ir. J. Med. Sci. 180, 649–653 (2011).
Google Scholar
Davis, F. M. et al. The clinical impact of cardiology consultation prior to major vascular surgery. Ann. Surg. 267, 189–195 (2018).
Google Scholar
Premaratne, S., Newman, J., Hobbs, S., Garnham, A. & Wall, M. Meta-analysis of direct surgical versus endovascular revascularization for aortoiliac occlusive disease. J. Vasc. Surg. 72, 726–737 (2020).
Google Scholar
Gillies, M. A. et al. Intensive care utilization and outcomes after high-risk surgery in Scotland: a population-based cohort study. Br. J. Anaesth. 118, 123–131 (2017).
Google Scholar
Patel, P. R. & Bechmann, S. Discharge Planning. in StatPearls (StatPearls Publishing, Treasure Island (FL), 2022).
Nguyen, L. L. & Barshes, N. R. Analysis of large databases in vascular surgery. J. Vasc. Surg. 52, 768–774 (2010).
Google Scholar
Northridge, M. E. & Metcalf, S. S. Enhancing implementation science by applying best principles of systems science. Health Res. Policy Syst. 14, 74 (2016).
Google Scholar
Batko, K. & Ślęzak, A. The use of Big Data Analytics in healthcare. J. Big Data 9, 3 (2022).
Google Scholar
Collins, G. S. et al. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 385, e078378 (2024).
Google Scholar
ACS NSQIP. ACS https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/.
Shiloach, M. et al. Toward robust information: data quality and inter-rater reliability in the American College of Surgeons National Surgical Quality Improvement Program. J. Am. Coll. Surg. 210, 6–16 (2010).
Google Scholar
Cohen, M. E. et al. Optimizing ACS NSQIP modeling for evaluation of surgical quality and risk: patient risk adjustment, procedure mix adjustment, shrinkage adjustment, and surgical focus. J. Am. Coll. Surg. 217, 336–346.e1 (2013).
Google Scholar
Stoner, M. C. et al. Reporting standards of the Society for Vascular Surgery for endovascular treatment of chronic lower extremity peripheral artery disease. J. Vasc. Surg. 64, e1–e21 (2016).
Google Scholar
ACS NSQIP Participant Use Data File. ACS https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/participant-use-data-file/.
Elfanagely, O. et al. Machine learning and surgical outcomes prediction: a systematic review. J. Surg. Res. 264, 346–361 (2021).
Google Scholar
Bektaş, M., Tuynman, J. B., Costa Pereira, J., Burchell, G. L. & van der Peet, D. L. Machine learning algorithms for predicting surgical outcomes after colorectal surgery: a systematic review. World J. Surg. https://doi.org/10.1007/s00268-022-06728-1 (2022).
Senders, J. T. et al. Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg. 109, 476–486.e1 (2018).
Google Scholar
Shipe, M. E., Deppen, S. A., Farjah, F. & Grogan, E. L. Developing prediction models for clinical use using logistic regression: an overview. J. Thorac. Dis. 11, S574–S584 (2019).
Google Scholar
Dobbin, K. K. & Simon, R. M. Optimally splitting cases for training and testing high dimensional classifiers. BMC Med. Genom.4, 31 (2011).
Jung, Y. & Hu, J. A K-fold averaging cross-validation procedure. J. Nonparametr. Stat. 27, 167–179 (2015).
Google Scholar
Adnan, M., Alarood, A. A. S., Uddin, M. I. & Ur Rehman, I. Utilizing grid search cross-validation with adaptive boosting for augmenting performance of machine learning models. PeerJ Comput. Sci. 8, e803 (2022).
Google Scholar
Wibowo, P. & Fatichah, C. Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of COVID-19. J. King Saud. Univ. Comput. Inf. Sci. 34, 7830–7839 (2022).
Google Scholar
Hajian-Tilaki, K. Receiver Operating Characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 4, 627–635 (2013).
Redelmeier, D. A., Bloch, D. A. & Hickam, D. H. Assessing predictive accuracy: how to compare Brier scores. J. Clin. Epidemiol. 44, 1141–1146 (1991).
Google Scholar
Loh, W.-Y. & Zhou, P. Variable importance scores. J. Data Sci. 19, 569–592 (2021).
Riley, R. D. et al. Calculating the sample size required for developing a clinical prediction model. BMJ m441 https://doi.org/10.1136/bmj.m441 (2020).
Ensor, J. pmsampsize: Sample Size for Development of a Prediction Model. The Comprehensive R Archive Network https://cran.r-project.org/package=pmsampsize (2023).
Kang, H. The prevention and handling of the missing data. Korean J. Anesthesiol. 64, 402–406 (2013).
Google Scholar
Groenwold, R. H. H. et al. Missing covariate data in clinical research: when and when not to use the missing-indicator method for analysis. CMAJ Can. Med. Assoc. J. 184, 1265–1269 (2012).
Hughes, R. A., Heron, J., Sterne, J. A. C. & Tilling, K. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. Int. J. Epidemiol. 48, 1294–1304 (2019).
Google Scholar
Download R-4.3.0 for Windows. The R-project for statistical computing. https://cran.r-project.org/bin/windows/base/.
Kuhn, M. et al. caret: Classification and Regression Training. The Comprehensive R Archive Network https://CRAN.R-project.org/package=caret (2024).
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. KDD 16, 785–794 (2016).
Wright, M. N., Wager, S. & Probst, P. ranger: A Fast Implementation of Random Forests. The Comprehensive R Archive Network https://cran.r-project.org/package=ranger (2024).
naivebayes: High Performance Implementation of the Naive Bayes Algorithm version 0.9.7 from CRAN. https://rdrr.io/cran/naivebayes/.
https://www.rdocumentation.org/packages/e1071/versions/1.7-11/topics/svm svm function – RDocumentation.
Ripley, B. & Venables, W. nnet: Feed-Forward Neural Networks and Multinomial Log-Linear Models. The Comprehensive R Archive Network https://CRAN.R-project.org/package=nnet (2025).
Robin, X. et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 77 (2011).
