Physics consistent machine learning framework for inverse modeling with applications to ICF capsule implosions

Machine Learning


  • Gittings, M. et al. The rage radiation-hydrodynamic code. Comput. Sci. Discov. 1, 015005 (2008).

    Google Scholar 

  • Fryxell, B. et al. Flash: An adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes. Astrophys. J. Suppl. Ser. 131, 273 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Marinak, M., Haan, S., Dittrich, T., Tipton, R. & Zimmerman, G. A comparison of three-dimensional multimode hydrodynamic instability growth on various national ignition facility capsule designs with hydra simulations. Phys. Plasmas 5, 1125–1132 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Zimmerman, G., Kershaw, D., Bailey, D. & Harte, J. Lasnex code for inertial confinement fusion (Technical Report California University, 1977).

    Google Scholar 

  • Keller, D. et al. Draco—A new multidimensional hydrocode. In APS Division of Plasma Physics Meeting Abstracts. Vol. 41. BP1–39 (1999).

  • Haines, B. M. et al. The development of a high-resolution Eulerian radiation-hydrodynamics simulation capability for laser-driven Hohlraums. Phys. Plasmas 29 (2022).

  • McGlaun, J. M., Thompson, S. & Elrick, M. CTH: A three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990).

    ADS 

    Google Scholar 

  • Weseloh, W. N. Pagosa: A multi-dimensional, multi-material parallel hydrodynamics code for material flow and deformation (u) (Technical Report, Los Alamos National Laboratory (LANL), Los Alamos, NM (United States), 2011).

    Google Scholar 

  • Summers, R., Wong, M., Boucheron, E. & Weatherby, J. Alegra–A massively parallel h-adaptive code for solid dynamics. In Technical Report, Sandia National Laboratory (SNL-NM), Albuquerque, NM (United States) (1997).

  • Abu-Shawareb, H. et al. Lawson criterion for ignition exceeded in an inertial fusion experiment. Phys. Rev. Lett. 129, 075001 (2022).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Weber, C. et al. Improving ICF implosion performance with alternative capsule supports. Phys. Plasmas 24 (2017).

  • Gaffney, J. et al. A review of equation-of-state models for inertial confinement fusion materials. High Energy Density Phys. 28, 7–24 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Lindl, J. ICF: Recent achievements and perspectives. Il Nuovo Cimento A 1965–1970(106), 1467–1487 (1993).

    ADS 

    Google Scholar 

  • Rosen, M. The physics of radiation driven ICF Hohlraums (Tech. Rep., Lawrence Livermore National Lab, 1995).

    Google Scholar 

  • Lee, S. et al. Effects of parametric uncertainty on multi-scale model predictions of shock response of a pressed energetic material. J. Appl. Phys. 125 (2019).

  • Rosen, M. D. The physics issues that determine inertial confinement fusion target gain and driver requirements: A tutorial. Phys. Plasmas 6, 1690–1699 (1999).

    ADS 
    CAS 

    Google Scholar 

  • Thomas, V. A. & Kares, R. J. Drive asymmetry and the origin of turbulence in an ICF implosion. Phys. Rev. Lett. 109, 075004 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barker, L. & Hollenbach, R. Laser interferometer for measuring high velocities of any reflecting surface. J. Appl. Phys. 43, 4669–4675 (1972).

    ADS 

    Google Scholar 

  • Malone, R. M. et al. Overview of the line-imaging Visar Diagnostic at the National Ignition Facility (NIF). In International Optical Design Conference, ThA5 (Optica Publishing Group, 2006).

  • Celliers, P. et al. Line-imaging velocimeter for shock diagnostics at the omega laser facility. Rev. Sci. Instrum. 75, 4916–4929 (2004).

    ADS 
    CAS 

    Google Scholar 

  • McCoy, C. A. & Knudson, M. D. Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows. J. Appl. Phys. 122 (2017).

  • Ahrens, T. J., Gust, W. & Royce, E. Material strength effect in the shock compression of alumina. J. Appl. Phys. 39, 4610–4616 (1968).

    ADS 
    CAS 

    Google Scholar 

  • Asay, J. & Lipkin, J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J. Appl. Phys. 49, 4242–4247 (1978).

    ADS 
    CAS 

    Google Scholar 

  • Lipkin, J. & Asay, J. Reshock and release of shock-compressed 6061—T6 aluminum. J. Appl. Phys. 48, 182–189 (1977).

    ADS 
    CAS 

    Google Scholar 

  • Brown, J., Alexander, C., Asay, J., Vogler, T. & Ding, J. Extracting strength from high pressure ramp-release experiments. J. Appl. Phys. 114 (2013).

  • Barnes, J. F., Blewett, P. J., McQueen, R. G., Meyer, K. A. & Venable, D. Taylor instability in solids. J. Appl. Phys. 45, 727–732 (1974).

    ADS 

    Google Scholar 

  • Colvin, J., Legrand, M., Remington, B., Schurtz, G. & Weber, S. A model for instability growth in accelerated solid metals. J. Appl. Phys. 93, 5287–5301 (2003).

    ADS 
    CAS 

    Google Scholar 

  • Barton, N. R. et al. A multiscale strength model for extreme loading conditions. J. Appl. Phys. 109 (2011).

  • Smith, R. et al. High strain-rate plastic flow in Al and Fe. J. Appl. Phys. 110 (2011).

  • Piriz, A. R., Cela, J. L., Tahir, N. A. & Hoffmann, D. H. Richtmyer-Meshkov instability in elastic-plastic media. Phys. Rev. E 78, 056401 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Piriz, A., Cela, J. L. & Tahir, N. Richtmyer-Meshkov instability as a tool for evaluating material strength under extreme conditions. Nucl. Instrum. Methods Phys. Res. Sect. Acc. Spectrom. Detect. Assoc. Equip. 606, 139–141 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Dimonte, G. et al. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities. Phys. Rev. Lett. 107, 264502 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • Buttler, W. et al. Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum. J. Fluid Mech. 703, 60–84 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Ortega, A. L., Lombardini, M., Pullin, D. & Meiron, D. Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws. Phys. Rev. E 89, 033018 (2014).

    ADS 

    Google Scholar 

  • Mikaelian, K. O. Shock-induced interface instability in viscous fluids and metals. Phys. Rev. E 87, 031003 (2013).

    ADS 

    Google Scholar 

  • Plohr, J. N. & Plohr, B. J. Linearized analysis of Richtmyer-Meshkov flow for elastic materials. J. Fluid Mech. 537, 55–89 (2005).

    ADS 
    MathSciNet 

    Google Scholar 

  • Prime, M. B. et al. Using Richtmyer–Meshkov instabilities to estimate metal strength at very high rates. In Dynamic Behavior of Materials, Volume 1: Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics. 191–197 (Springer, 2016).

  • Thomas, V. A. & Kares, R. J. Drive asymmetry, turbulence and ignition failure in high convergence ICF implosions (Tech. Rep. Los Alamos National Laboratory (LANL), 2013).

    Google Scholar 

  • Weber, C. et al. Mixing in ICF implosions on the national ignition facility caused by the fill-tube. Phys. Plasmas 27 (2020).

  • Delorme, B. Experimental study of the initial conditions of the Rayleigh-Taylor instability at the ablation front in inertial confinement fusion (Tech. Rep., Universite de Bordeaux, 2015).

    Google Scholar 

  • Zhou, Y. et al. Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities. Phys. Plasmas 26 (2019).

  • Proano, E. S. & Rollin, B. Toward a better understanding of hydrodynamic instabilities in inertial fusion approaches. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Vol. 4676 (2017).

  • Schaeffer, D. B. et al. Proton imaging of high-energy-density laboratory plasmas. Rev. Mod. Phys. 95, 045007 (2023).

    ADS 
    CAS 

    Google Scholar 

  • Strobl, M. et al. Advances in neutron radiography and tomography. J. Phys. D Appl. Phys. 42, 243001 (2009).

    ADS 

    Google Scholar 

  • Kozioziemski, B., Bachmann, B., Do, A. & Tommasini, R. X-ray imaging methods for high-energy density physics applications. Rev. Sci. Instrum. 94 (2023).

  • Endo, T. et al. Dynamic behavior of rippled shock waves and subsequently induced areal-density-perturbation growth in laser-irradiated foils. Phys. Rev. Lett. 74, 3608 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Serino, D. A., Klasky, M. L., Nadiga, B. T., Xu, X. & Wilcox, T. Reconstructing Richtmyer-Meshkov instabilities from noisy radiographs using low dimensional features and attention-based neural networks. Opt. Exp. 32, 43366–43386. https://doi.org/10.1364/OE.538495 (2024).

    CAS 

    Google Scholar 

  • Zhai, Z., Zou, L., Wu, Q. & Luo, X. Review of experimental Richtmyer-Meshkov instability in shock tube: from simple to complex. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 232, 2830–2849 (2018).

    Google Scholar 

  • Yager-Elorriaga, D. A. et al. Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform. Phys. Plasmas 29 (2022).

  • Do, A. et al. High spatial resolution and contrast radiography of hydrodynamic instabilities at the national ignition facility. Phys. Plasmas 29 (2022).

  • Si, T., Long, T., Zhai, Z. & Luo, X. Experimental investigation of cylindrical converging shock waves interacting with a polygonal heavy gas cylinder. J. Fluid Mech. 784, 225–251 (2015).

    ADS 

    Google Scholar 

  • Rupert, V. Shock-interface interaction: current research on the Richtmyer-Meshkov problem. In Shock Waves: Proceedings of the 18th International Symposium on Shock Waves, Held at Sendai, Japan 21–26 July 1991. 83–94 (Springer, 1992).

  • Brouillette, M. The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002).

    ADS 
    MathSciNet 

    Google Scholar 

  • Zhou, Y. et al. Rayleigh-Taylor and Richtmyer-Meshkov instabilities: A journey through scales. Phys. D Nonlinear Phenom. 423, 132838 (2021).

    MathSciNet 

    Google Scholar 

  • Leinov, E. et al. Experimental and numerical investigation of the Richtmyer-Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449–475 (2009).

    ADS 

    Google Scholar 

  • Holmes, R. L. et al. Richtmyer-Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 55–79 (1999).

    ADS 
    MathSciNet 

    Google Scholar 

  • Zhou, Y. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II. Phys. Rep. 723, 1–160 (2017).

    ADS 
    MathSciNet 

    Google Scholar 

  • Zhang, Q. & Graham, M. J. A numerical study of Richtmyer-Meshkov instability driven by cylindrical shocks. Phys. Fluids 10, 974–992 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Hossain, M. et al. High-precision inversion of dynamic radiography using hydrodynamic features. Opt. Exp. 30, 14432–14452 (2022).

    CAS 

    Google Scholar 

  • Bello-Maldonado, P. D., Kolev, T. V., Rieben, R. N. & Tomov, V. Z. A matrix-free hyperviscosity formulation for high-order ale hydrodynamics. Comput. Fluids 205, 104577 (2020).

    MathSciNet 

    Google Scholar 

  • Serino, D. A., Klasky, M., Burby, J. W. & Schei, J. L. Density reconstruction from noisy radiographs using an attention-based transformer network. In Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP), JW2A.4 (Optica Publishing Group, 2023).

  • Nadiga, B. T. & Klasky, M. L. Degeneracy and deterministic/probabilistic inversions of radiographic data. LA-UR-23-25917 (2023). Sponsor: USDOE National Nuclear Security Administration (NNSA) ; USDOE ; LDRD.

  • Le Pape, S. et al. Observation of a reflected shock in an indirectly driven spherical implosion at the national ignition facility. Phys. Rev. Lett. 112, 225002 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Asch, M., Bocquet, M. & Nodet, M. Data Assimilation: Methods, Algorithms, and Applications (SIAM, 2016).

  • Smith, D. R. Variational Methods in Optimization (Courier Corporation, 1998).

  • Cai, Z., Chen, J. & Liu, M. Least-squares relu neural network (lsnn) method for scalar nonlinear hyperbolic conservation law. Appl. Numer. Math. 174, 163–176 (2022).

    MathSciNet 

    Google Scholar 

  • Biegler, L. T., Ghattas, O., Heinkenschloss, M. & van Bloemen Waanders, B. Large-scale pde-constrained optimization: An introduction. In Large-Scale PDE-Constrained Optimization. 3–13 (Springer, 2003).

  • Tran, B. K., Southworth, B. S. & Leok, M. On properties of adjoint systems for evolutionary pdes. J. Nonlinear Sci. 34, 95 (2024).

    MathSciNet 

    Google Scholar 

  • Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    ADS 
    MathSciNet 

    Google Scholar 

  • Cuomo, S. et al. Scientific machine learning through physics-informed neural networks: Where we are and what’s next. J. Sci. Comput. 92, 88 (2022).

    MathSciNet 

    Google Scholar 

  • Gaffney, J. A. et al. Data-driven prediction of scaling and ignition of inertial confinement fusion experiments. Phys. Plasmas 31, 092702. https://doi.org/10.1063/5.0215962 (2024). https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0215962/20162047/092702_1_5.0215962.pdf.

  • Gaffney, J., Clark, D., Sonnad, V. & Libby, S. Development of a Bayesian method for the analysis of inertial confinement fusion experiments on the NIF. Nucl. Fusion 53, 073032. https://doi.org/10.1088/0029-5515/53/7/073032 (2013).

    ADS 
    CAS 

    Google Scholar 

  • Hatfield, P. et al. Using sparse gaussian processes for predicting robust inertial confinement fusion implosion yields. IEEE Trans. Plasma Sci. 48, 14–21. https://doi.org/10.1109/TPS.2019.2944416 (2020).

    ADS 

    Google Scholar 

  • Wang, J., Chiang, N., Gillette, A. & Peterson, J. L. A multifidelity Bayesian optimization method for inertial confinement fusion design. Phys. Plasmas 31, 032706. https://doi.org/10.1063/5.0191543 (2024). https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0191543/19850210/032706_1_5.0191543.pdf.

  • Knapp, P. F. & Lewis, W. E. Advanced data analysis in inertial confinement fusion and high energy density physics. Rev. Sci. Instrum. 94, 061103. https://doi.org/10.1063/5.0128661 (2023). https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/5.0128661/17972327/061103_1_5.0128661.pdf.

  • Gautam, S. et al. Learning robust features for scatter removal and reconstruction in dynamic ICF X-ray tomography. arXiv preprint arXiv:2408.12766 (2024).

  • Merritt, E. C. et al. Experimental study of energy transfer in double shell implosions. Phys. Plasmas 26, 052702. https://doi.org/10.1063/1.5086674 (2019). https://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/1.5086674/15643290/052702_1_online.pdf.

  • Hertel, E. S. Jr. & Kerley, G. I. CTH Reference Manual: The Equation of State Package. Report SAND98-0947, Sandia National Laboratories (1998).

  • van Aarle, W. et al. The ASTRA toolbox: A platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47. https://doi.org/10.1016/j.ultramic.2015.05.002 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Trujillo-Pino, A., Krissian, K., Alemán-Flores, M. & Santana-CedrÃs, D. Accurate subpixel edge location based on partial area effect. Image Vis. Comput. 31, 72–90. https://doi.org/10.1016/j.imavis.2012.10.005 (2013).

  • Tillotson, J. H. Metallic equations of state for hypervelocity impact. General Atomic Report GA-3216. 1962. Technical Report 3216 (1962).

  • Johnson, J. The sesame database. Tech. Rep. LA-UR-94-1451, Los Alamos National Lab. (LANL) (1994).

  • Whang, J. et al. Deblurring via stochastic refinement. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 16272–16282. https://doi.org/10.1109/CVPR52688.2022.01581 (2022).

  • Brock, A., Donahue, J. & Simonyan, K. Large scale GAN training for high fidelity natural image synthesis (2019). arXiv:1809.11096.

  • Kingma, D. P. & Ba, J. A method for stochastic optimization, Adam, 2017. arXiv:1412.6980.

  • Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. CoRR abs/1312.6114 (2013).

  • Cinelli, L. P., Marins, M. A., Da Silva, E. A. B. & Netto, S. L. Variational Methods for Machine Learning with Applications to Deep Networks (Springer, 2021).

  • Kingma, D. P., Mohamed, S., Jimenez Rezende, D. & Welling, M. Semi-supervised learning with deep generative models. Adv. Neural Inf. Process. Syst. 27 (2014).

  • Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (Guyon, I. et al. eds.). Vol. 30 (Curran Associates, Inc., 2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *