Multilingual identification of nuanced dimensions of hope speech in social media texts

Machine Learning


  • Schornick, Z., Ellis, N., Ray, E., Snyder, B.-J. & Thomas, K. Hope that benefits others: A systematic literature review of hope theory and prosocial outcomes. Int. J. Appl. Posit. Psychol.8, 37–61 (2023).

    Google Scholar 

  • Snyder, C. R. Hope theory: Rainbows in the mind. Psychol. Inq.13, 249–275 (2002).

    Google Scholar 

  • Ezzy, D. Illness narratives: Time, hope and HIV. Soc. Sci. Med.50, 605–617 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Lohne, V. & Severinsson, E. Hope during the first months after acute spinal cord injury. J. Adv. Nurs.47, 279–286 (2004).

    PubMed 

    Google Scholar 

  • Wiles, R., Cott, C. & Gibson, B. E. Hope, expectations and recovery from illness: A narrative synthesis of qualitative research. J. Adv. Nurs.64, 564–573 (2008).

    PubMed 

    Google Scholar 

  • O’Hara, D. J. spsampsps O’Hara, E. F. Hope and well-being in sustainable development. Good Heal. Well-Being 1–10 (2021).

  • Webb, D. Modes of hoping. Hist. Hum. Sci.20, 65–83 (2007).

    Google Scholar 

  • Maretha, C. Meaning relationship of the verb hope and wish in English. SIGEH ELT: Journal of Literature and Linguistics1, 46–63 (2021).

    Google Scholar 

  • Verhaeghe, S. T., Van Zuuren, F. J., Defloor, T., Duijnstee, M. S. & Grypdonck, M. H. How does information influence hope in family members of traumatic coma patients in intensive care unit?. J. Clin. Nurs.16, 1488–1497 (2007).

    PubMed 

    Google Scholar 

  • Bender, H. & Rawluk, A. Adaptive hope: A process for social environmental change. Ecol. Soc.https://doi.org/10.5751/ES-14099-280214 (2023).

    Article 

    Google Scholar 

  • Butt, S. et al. Emothreat@ fire2022: Shared track on emotions and threat detection in urdu. In Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation, 1–3 (2022).

  • Butt, S. et al. Guret: Distinguishing guilt and regret related text. arXiv preprint arXiv:2401.16541 (2024).

  • Balouchzahi, F., Sidorov, G. & Gelbukh, A. Polyhope: Two-level hope speech detection from tweets. Expert Syst. Appl.225, 120078 (2023).

    Google Scholar 

  • Chakravarthi, B. R. HopeEDI: A multilingual hope speech detection dataset for equality, diversity, and inclusion. In Nissim, M., Patti, V., Plank, B. & Durmus, E. (eds.) Proceedings of the Third Workshop on Computational Modeling of People’s Opinions, Personality, and Emotion’s in Social Media, 41–53 (Association for Computational Linguistics, Barcelona, Spain (Online), 2020).

  • Avelino, H. Mexico city spanish. J. Int. Phonetic Assoc.48, 223–230 (2018).

    Google Scholar 

  • Jeffery, J. V. & Van Beuningen, C. Language education in the EU and the US: Paradoxes and parallels. Prospects48, 175–191 (2020).

    Google Scholar 

  • García-Baena, D., García-Cumbreras, M. Á., Jiménez-Zafra, S. M., García-Díaz, J. A. & Valencia-García, R. Hope speech detection in Spanish: The LGBT case. Lang. Resour. Eval.57, 1487–1514 (2023).

    Google Scholar 

  • Hande, A. et al. Hope speech detection in under-resourced kannada language. arXiv e-prints arXiv–2108 (2021).

  • Nath, T., Singh, V. K. & Gupta, V. Bonghope: An annotated corpus for bengali hope speech detection. Int. J. Inf. Technol. 1–9 (2025).

  • Malik, M. S. I., Nazarova, A., Jamjoom, M. M. & Ignatov, D. I. Multilingual hope speech detection: A robust framework using transfer learning of fine-tuning roberta model. J. King Saud Univ. – Comput. Inf. Sci.35, 101736 (2023).

    Google Scholar 

  • Balouchzahi, F., Butt, S., Amjad, M., Sidorov, G. & Gelbukh, A. Urduhope: Analysis of hope and hopelessness in urdu texts. Available at SSRN 4881844 (2024).

  • Jiménez-Zafra, S. M. et al. Overview of hope at iberlef 2023: Multilingual hope speech detection. Procesamiento del lenguaje natural 71, 371–381 (2023).

    Google Scholar 

  • García-Baena, D. et al. Overview of HOPE at IberLEF 2024: Approaching Hope Speech Detection in Social Media from Two Perspectives, for Equality, Diversity and Inclusion and as Expectations. Procesamiento del Lenguaje Natural 73 (2024).

  • Domínguez-Olmedo, J. L., Vázquez, J. M. & Álvarez, V. P. I2c-huelva at hope2023@ iberlef: Simple use of transformers for automatic hope speech detection. In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).

  • Yigezu, M. G., Bade, G. Y., Kolesnikova, O. & Sidorov, G. Multilingual hope speech detection using machine learning. In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).

  • Ngo, A. & Tran, H. T. H. Zootopi at HOPE2023@ IberLEF: Is zero-shot chatgpt the future of hope speech detection? In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).

  • Rodríguez-García, M. Á., Riaño-Martínez, A. & Montalvo-Herranz, S. Urjc-team at hope2023@ iberlef: Multilingual hope speech detection using transformers architecture. In In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEURWS.org (2023).

  • Ahani, Z., Sidorov, G., Kolesnikova, O. & Gelbukh, A. F. Zavira at hope2023@ iberlef: Hope speech detection from text using tf-idf features and machine learning algorithms. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).

  • Pan, R., Alcaraz-Mármol, G. & García-Sánchez, F. Umuteam at hope2023@ iberlef: Evaluation of transformer model with data augmentation for multilingual hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).

  • ShahikiTash, M., ArmentaSegura, J., Kolesnikova, O., Sidorov, G. & Gelbukh, A. Lidoma at hope2023iberlef: Hope speech detection using lexical features and convolutional neural networks. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).

  • Balaji, V., A., K., A., B. & B., B. Nlp_ssn_cse at hope2023iberlef: Multilingual hope speech detection using machine learning algorithms. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023), co-located with the 39th Conference of the Spanish Society for Natural Language Processing (SEPLN 2023), CEUR-WS. org (2023).

  • Nguyen Thi, T. & Dang Van, T. An Empirical Study of Prompt Engineering with Large Language Models for Hope Detection in English and Spanish. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Chau Pham Quoc, H. & Dang Van, T. Choosing the Right Language Model for the Right Task. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Bui Hong, S., Le Minh, Q. & Dang Van, T. ABCD Team at HOPE 2024: Hope Detection with BERTology Models and Data Augmentation. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Armenta-Segura, J. & Sidorov, G. Ometeotl at hope2024@iberlef: Custom bert models for hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Pan, R., Ángela Almela & Alcaraz-Mármol, G. UMUTeam at hope@iberlef 2024: Fine-tuning approach with sentiment and emotion features for hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Ibrahim, M. Parameter-free spanish hope speech detection. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Ullah, F., Zamir, M. T., Ahmad, M., Sidorov, G. & Gelbukh, A. Hope: A multilingual approach to identifying positive communication in social media. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Ponnusamy, K. K. et al. VEL@iberlef 2024: Hope speech detection in spanish social media comments using bert pre-trained model. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Divakaran, S., Girish, K. & Shashirekha, H. L. Hope on the horizon: Experiments with learning models for hope speech detection in spanish and english. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Bade, G. Y., Koleniskova, O., Oropeza, J. L., Sidorov, G. & Bergene, K. F. Hope speech in social media texts using transformer. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Naseeb, A., Eyob, K. L., Sidorov, G. & Kolesnikova, O. Hope@iberlef 2024: Beyond binary bounds-classifying hope in online discourse. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Lemlem, E., Tsadkan, Y., Amna, N., Grigori, S. & Ildar, B. Enhancing hope speech detection on twitter using machine learning and transformer models. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2024), co-located with the 40th Conference of the Spanish Society for Natural Language Processing (SEPLN 2024), CEUR-WS.org (2024).

  • Eaves, E. R., Nichter, M. & Ritenbaugh, C. Ways of hoping: Navigating the paradox of hope and despair in chronic pain. Cult. Med. Psychiatry40, 35–58 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Garrard, E. & Wrigley, A. Hope and terminal illness: False hope versus absolute hope. Clin. Ethics4, 38–43 (2009).

    Google Scholar 

  • Eliott, J. & Olver, I. The discursive properties of “hope”: A qualitative analysis of cancer patients’ speech. Qual. Health Res.12, 173–193 (2002).

    PubMed 

    Google Scholar 

  • Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas.20, 37–46 (1960).

    Google Scholar 

  • Falotico, R. & Quatto, P. Fleiss’ kappa statistic without paradoxes. Qual. Quant.49, 463–470 (2015).

    Google Scholar 

  • Hickman, L., Thapa, S., Tay, L., Cao, M. & Srinivasan, P. Text preprocessing for text mining in organizational research: Review and recommendations. Organ. Res. Methods25, 114–146 (2022).

    Google Scholar 

  • Anandarajan, M. et al. Text preprocessing. Practical text analytics: Maximizing the value of text data 45–59 (2019).

  • Siino, M., Tinnirello, I. & La Cascia, M. Is text preprocessing still worth the time? A comparative survey on the influence of popular preprocessing methods on transformers and traditional classifiers. Inf. Syst.121, 102342 (2024).

    Google Scholar 

  • Koch, B., Denton, E., Hanna, A. & Foster, J. G. Reduced, reused and recycled: The life of a dataset in machine learning research. Proc. Neural Inf. Process. Syst. Track on Datasets Benchmarks 1 (2021).

  • Bojanowski, P., Grave, É., Joulin, A. & Mikolov, T. Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist.5, 135–146 (2017).

    Google Scholar 

  • Umer, M. et al. Impact of convolutional neural network and fasttext embedding on text classification. Multimedia Tools Appl.82, 5569–5585 (2023).

    Google Scholar 

  • Mohamad, K. & Karaoğlan, K. M. Enhancing deep learning-based sentiment analysis using static and contextual language models. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi12, 712–724 (2023).

    Google Scholar 

  • Shin, J., Kim, Y., Yoon, S. & Jung, K. Contextual-cnn: A novel architecture capturing unified meaning for sentence classification. In 2018 IEEE international conference on big data and smart computing (BigComp), 491–494 (IEEE, 2018).

  • Yao, K., Zweig, G., Hwang, M.-Y., Shi, Y. & Yu, D. Recurrent neural networks for language understanding. In Interspeech, 2524–2528 (2013).

  • Mullis, J., Chen, C., Morkos, B. & Ferguson, S. Deep neural networks in natural language processing for classifying requirements by origin and functionality: An application of BERT in system requirements. J. Mech. Des.146, 041401 (2024).

    Google Scholar 

  • Karaoglan, K. M. & Findik, O. Enhancing aspect category detection through hybridised contextualised neural language models: A case study in multi-label text classification. Comput. J.67, 2257–2269 (2024).

    Google Scholar 

  • Karaoğlan, K. M. Novel approaches for fake news detection based on attention-based deep multiple-instance learning using contextualized neural language models. Neurocomputing 602, 128263 (2024).

    Google Scholar 

  • Sidorov, G., Balouchzahi, F., Butt, S. & Gelbukh, A. Regret and hope on transformers: An analysis of transformers on regret and hope speech detection datasets. Appl. Sci.13, 3983 (2023).

    CAS 

    Google Scholar 

  • Balouchzahi, F., Butt, S., Sidorov, G. & Gelbukh, A. Reddit: Regret detection and domain identification from text. Expert Syst. Appl.225, 120099 (2023).

    Google Scholar 

  • Virtanen, A. et al. Multilingual is not enough: Bert for finnish. arXiv preprint arXiv:1912.07076 (2019).

  • Merchant, A., Rahimtoroghi, E., Pavlick, E. & Tenney, I. What happens to bert embeddings during fine-tuning? In Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, 33–44 (2020).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *