Modeling interfacial tension of surfactant–hydrocarbon systems using robust tree-based machine learning algorithms

Machine Learning


  • Sagir, M., Mushtaq, M., Tahir, M. S., Tahir, M. B. & Shaik, A. R. Surfactant in Petroleum Industry BT—Surfactants for Enhanced Oil Recovery Applications. (eds. Sagir, M., Mushtaq, M., Tahir, M. S., Tahir, M. B. & Shaik, A. R.).13–40 (Springer, 2020). https://doi.org/10.1007/978-3-030-18785-9_2.

  • Hirasaki, G. J., Miller, C. A. & Puerto, M. Recent advances in surfactant EOR. SPE J. 16, 889–907 (2011).

    Article 
    CAS 

    Google Scholar 

  • Puerto, M., Hirasaki, G. J., Miller, C. A. & Barnes, J. R. Surfactant systems for EOR in high-temperature, high-salinity environments. SPE J. (Society of Petroleum Engineers) 17, 11–19 (2012).

    CAS 

    Google Scholar 

  • Aranda-Bravo, C. G., Romero-Martínez, A., Trejo, A. & Águila-Hernández, J. Interfacial tension and density of water + branched hydrocarbon binary systems in the range 303–343 K. Ind. Eng. Chem. Res. 48, 1476–1483 (2009).

    Article 
    CAS 

    Google Scholar 

  • Bui, B. T. & Tutuncu, A. N. Interfacial tension induced-transport in shale: A pore-scale study. J. Pet. Sci. Eng. 171, 1409–1419 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kim, H. & Burgess, D. J. Prediction of interfacial tension between oil mixtures and water. J. Colloid Interface Sci. 241, 509–513 (2001).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Reis, P. K. P. & Carvalho, M. S. Pore-scale compositional modeling of gas-condensate flow: Effects of interfacial tension and flow velocity on relative permeability. J. Pet. Sci. Eng. 202, 108454 (2021).

    Article 
    CAS 

    Google Scholar 

  • Iyi, D., Balogun, Y., Oyeneyin, B. & Faisal, N. Numerical modelling of the effect of wettability, interfacial tension and temperature on oil recovery at pore-scale level. J. Pet. Sci. Eng. 201, 108453 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fulcher, R. A. Jr., Ertekin, T. & Stahl, C. D. Effect of capillary number and its constituents on two-phase relative permeability curves. J. Pet. Technol. 37, 249–260 (1985).

    Article 
    CAS 

    Google Scholar 

  • Tang, J. S. Interwell tracer tests to determine residual oil saturation to waterflood at Judy Creek Bhl’a’pool. J. Can. Pet. Technol. 31, 133 (1992).

    Article 

    Google Scholar 

  • Chatzis, I. & Morrow, N. R. Correlation of capillary number relationships for sandstone. Soc. Pet. Eng. J. 24, 555–562 (1984).

    Article 
    CAS 

    Google Scholar 

  • Chatzis, I., Kuntamukkula, M. S. & Morrow, N. R. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reserv. Eng. 3, 902–912 (1988).

    Article 
    CAS 

    Google Scholar 

  • Garnes, J. M., Mathisen, A. M., Scheie, A. & Skauge, A. Capillary number relations for some north, sea reservoir sandstones. in SPE/DOE Enhanced Oil Recovery Symposium SPE-20264-MS. https://doi.org/10.2118/20264-MS (1990).

  • Johannesen, E. B. & Graue, A. Mobilization of remaining oil—Emphasis on capillary number and wettability. in International Oil Conference and Exhibition in Mexico SPE-108724-MS. https://doi.org/10.2118/108724-MS (2007).

  • Chukwudeme, E. A., Fjelde, I., Abeysinghe, K. & Lohne, A. Effect of interfacial tension on water/oil relative permeability on the basis of history matching to coreflood data. SPE Reserv. Eval. Eng. 17, 37–48 (2014).

    Article 
    CAS 

    Google Scholar 

  • Guo, H. et al. Review of capillary number in chemical enhanced oil recovery. in Society of Petroleum Engineers—SPE Kuwait Oil Gas Show Conference (2015). https://doi.org/10.2118/175172-ms.

  • Delshad, M., Najafabadi, N. F., Anderson, G. A., Pope, G. A. & Sepehrnoori, K. Modeling wettability alteration by surfactants in naturally fractured reservoirs. SPE Reserv. Eval. Eng. 12, 361–370 (2009).

    Article 
    CAS 

    Google Scholar 

  • Lohne, A. & Fjelde, I. Surfactant flooding in heterogeneous formations. in SPE Improved Oil Recovery Symposium SPE-154178-MS. https://doi.org/10.2118/154178-MS (2012).

  • Arab, D., Kantzas, A. & Bryant, S. L. Water flooding of oil reservoirs: Effect of oil viscosity and injection velocity on the interplay between capillary and viscous forces. J. Pet. Sci. Eng. 186, 106691 (2020).

    Article 
    CAS 

    Google Scholar 

  • Dang, C. et al. Modeling and optimization of alkaline-surfactant-polymer flooding and hybrid enhanced oil recovery processes. J. Pet. Sci. Eng. 169, 578–601 (2018).

    Article 
    CAS 

    Google Scholar 

  • Nowrouzi, I., Mohammadi, A. H. & Manshad, A. K. Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant. J. Pet. Sci. Eng. 189, 106901 (2020).

    Article 
    CAS 

    Google Scholar 

  • Halliday, H. L. Surfactants: Past, present and future. J. Perinatol. 28, S47–S56 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beverung, C. J., Radke, C. J. & Blanch, H. W. Protein adsorption at the oil/water interface: Characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 81, 59–80 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Campanelli, J. R. & Wang, X. Dynamic interfacial tension of surfactant mixtures at liquid–liquid interfaces. J. Colloid Interface Sci. 213, 340–351 (1999).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S., Liu, J., Hou, J. & Zhang, G. Meniscus-induced motion of oil droplets. Colloids Surf. A Physicochem. Eng. Asp. 469, 252–255 (2015).

    Article 
    CAS 

    Google Scholar 

  • Liu, J., Li, S. & Hou, J. Near-post meniscus-induced migration and assembly of bubbles. Soft Matter 12, 2221–2230 (2016).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Ultra-low interfacial tension biobased and catanionic surfactants for low permeability reservoirs. J. Mol. Liq. 309, 113099 (2020).

    Article 
    CAS 

    Google Scholar 

  • Zhou, H. et al. Systematic investigation of ionic liquid-type gemini surfactants and their abnormal salt effects on the interfacial tension of a water/model oil system. J. Mol. Liq. 249, 33–39 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. et al. Effect of different acidic fractions in crude oil on dynamic interfacial tensions in surfactant/alkali/model oil systems. J. Pet. Sci. Eng. 41, 189–198 (2004).

    Article 
    CAS 

    Google Scholar 

  • Xu, J. et al. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. J. Mol. Struct. 1052, 50–56 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Moradi, S., Isari, A. A., Bachari, Z. & Mahmoodi, H. Combination of a new natural surfactant and smart water injection for enhanced oil recovery in carbonate rock: Synergic impacts of active ions and natural surfactant concentration. J. Pet. Sci. Eng. 176, 1–10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mosayebi, A., Angaji, M. T. & Khadiv-Parsi, P. The effect of temperature on the interfacial tension between crude oil and ethoxylated nonylphenols. Pet. Sci. Technol. 34, 1315–1322 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hjelmeland, O. S. & Larrondo, L. E. Experimental investigation of the effects of temperature, pressure, and crude oil composition on interfacial properties. SPE Reserv. Eng. 1, 321–328 (1986).

    Article 
    CAS 

    Google Scholar 

  • Farhadi, H., Ayatollahi, S. & Fatemi, M. The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate. J. Pet. Sci. Eng. 196, 107862 (2021).

    Article 
    CAS 

    Google Scholar 

  • Negin, C., Ali, S. & Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3, 197–211 (2017).

    Article 

    Google Scholar 

  • Sheng, S. S. et al. Structure-activity relationship of anionic–nonionic surfactant for reducing interfacial tension of crude oil. J. Mol. Liq. 313, 112772 (2020).

    Article 
    CAS 

    Google Scholar 

  • Strey, R. Phase behavior and interfacial curvature in water–oil–surfactant systems. Curr. Opin. Colloid Interface Sci. 1, 402–410 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kamal, M. S., Hussein, I. A. & Sultan, A. S. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications. Energy Fuels 31, 7701–7720 (2017).

    Article 
    CAS 

    Google Scholar 

  • Lee, B. B., Ravindra, P. & Chan, E. S. A critical review: Surface and interfacial tension measurement by the drop weight method. Chem. Eng. Commun. 195, 889–924. https://doi.org/10.1080/00986440801905056 (2008).

    Article 
    CAS 

    Google Scholar 

  • Yildirim, O. E., Xu, Q. & Basaran, O. A. Analysis of the drop weight method. Phys. Fluids 17, 062107 (2005).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C. & Tabor, R. F. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226–237 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Touhami, Y., Neale, G. H., Hornof, V. & Khalfalah, H. A modified pendant drop method for transient and dynamic interfacial tension measurement. Colloids Surf. A Physicochem. Eng. Asp. 112, 31–41 (1996).

    Article 
    CAS 

    Google Scholar 

  • Garandet, J. P., Vinet, B. & Gros, P. Considerations on the pendant drop method: A new look at Tate’s law and Harkins’ correction factor. J. Colloid Interface Sci. 165, 351–354 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Viades-Trejo, J. & Gracia-Fadrique, J. Spinning drop method: From Young–Laplace to Vonnegut. Colloids Surf. A Physicochem. Eng. Asp. 302, 549–552 (2007).

    Article 
    CAS 

    Google Scholar 

  • Joseph, D. D. et al. A spinning drop tensioextensometer. J. Rheol. (N. Y. N. Y) 36, 621 (1998).

    Article 
    CAS 

    Google Scholar 

  • Cayias, J. L., Schechter, R. S. & Wade, W. H. Measurement of low interfacial tension via the spinning drop technique. ACS Symp. Ser. https://doi.org/10.1021/BK-1975-0008.CH017 (1974).

    Article 

    Google Scholar 

  • Fainerman, V. B., Zholob, S. A., Lucassen-Reynders, E. H. & Miller, R. Comparison of various models describing the adsorption of surfactant molecules capable of interfacial reorientation. J. Colloid Interface Sci. 261, 180–183 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bahramian, A. & Zarbakhsh, A. Interfacial equation of state for ionized surfactants at oil/water interfaces. Soft Matter 11, 6482–6491 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kairaliyeva, T. et al. Surface tension and adsorption studies by drop profile analysis tensiometry. J. Surfactants Deterg. 20, 1225–1241 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross, S. & Morrison, I. D. On the alleged ideality of Szyszkowski–Langmuir adsorption. J. Colloid Interface Sci. 91, 244–247 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rusanov, A. I. On the thermodynamics of thin films. The Frumkin equation. Colloid J. 81, 741–746 (2019).

    Article 
    CAS 

    Google Scholar 

  • Markin, V. S., Volkova-Gugeshashvili, M. I. & Volkov, A. G. Adsorption at liquid interfaces: The generalized Langmuir isotherm and interfacial structure. J. Phys. Chem. B 110, 11415–11420 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mulqueen, M. & Blankschtein, D. Theoretical and experimental investigation of the equilibrium oil−water interfacial tensions of solutions containing surfactant mixtures. Langmuir 18, 365–376 (2002).

    Article 
    CAS 

    Google Scholar 

  • Mulqueen, M. & Blankschtein, D. Theoretical and experimental investigation of the equilibrium oil–water interfacial tensions of solutions containing surfactant mixtures. Langmuir 18, 365–376 (2002).

    Article 
    CAS 

    Google Scholar 

  • Nikseresht, S., Riazi, M., Amani, M. J. & Farshchi Tabrizi, F. Prediction of oil/water interfacial tension containing ionic surfactants. Colloids Interface Sci. Commun. 34, 100217 (2020).

    Article 
    CAS 

    Google Scholar 

  • Chen, H. et al. A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network. Energy 239, 122286 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. et al. Prediction of coal self-ignition tendency using machine learning. Fuel 325, 124832 (2022).

    Article 
    CAS 

    Google Scholar 

  • Tabasi, S. et al. Optimized machine learning models for natural fractures prediction using conventional well logs. Fuel 326, 124952 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ameli, F., Hemmati-Sarapardeh, A., Schaffie, M., Husein, M. M. & Shamshirband, S. Modeling interfacial tension in N2/n-alkane systems using corresponding state theory: Application to gas injection processes. Fuel 222, 779–791 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ameli, F., Hemmati-Sarapardeh, A., Tatar, A., Zanganeh, A. & Ayatollahi, S. Modeling interfacial tension of normal alkane-supercritical CO2 systems: Application to gas injection processes. Fuel 253, 1436–1445 (2019).

    Article 
    CAS 

    Google Scholar 

  • Amooie, M. A. et al. Data-driven modeling of interfacial tension in impure CO2-brine systems with implications for geological carbon storage. Int. J. Greenh. Gas Control 90, 102811 (2019).

    Article 
    CAS 

    Google Scholar 

  • Mehrjoo, H., Riazi, M., Nait Amar, M. & Hemmati-Sarapardeh, A. Modeling interfacial tension of methane-brine systems at high pressure and high salinity conditions. J. Taiwan Inst. Chem. Eng. 114, 125–141 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nait Amar, M., Shateri, M., Hemmati-Sarapardeh, A. & Alamatsaz, A. Modeling oil-brine interfacial tension at high pressure and high salinity conditions. J. Pet. Sci. Eng. 183, 106413 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rostami, A., Ebadi, H., Arabloo, M., Meybodi, M. K. & Bahadori, A. Toward genetic programming (GP) approach for estimation of hydrocarbon/water interfacial tension. J. Mol. Liq. 230, 175–189 (2017).

    Article 
    CAS 

    Google Scholar 

  • Rouhibakhsh, K. & Darvish, H. Utilization of fuzzy C-means algorithm as a novel predictive tool for estimation of interfacial tension of hydrocarbon and brine. Pet. Sci. Technol. 36, 1107–1112 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kiomarsiyan, A. & Esfandiarian, A. Applying grid partitioning based fuzzy inference system method to estimate interfacial tension of brine and hydrocarbon. Pet. Sci. Technol. 37, 1620–1625 (2019).

    Article 
    CAS 

    Google Scholar 

  • Abooali, D., Sobati, M. A., Shahhosseini, S. & Assareh, M. A new empirical model for estimation of crude oil/brine interfacial tension using genetic programming approach. J. Pet. Sci. Eng. 173, 187–196 (2019).

    Article 
    CAS 

    Google Scholar 

  • Pradines, V. et al. Adsorption of alkyl trimethylammonium bromides at the water/air and water/hexane interfaces. Colloids Surf. A Physicochem. Eng. Asp. 371, 22–28 (2010).

    Article 
    CAS 

    Google Scholar 

  • Mucic, N., Kovalchuk, N. M., Aksenenko, E. V., Fainerman, V. B. & Miller, R. Adsorption layer properties of alkyltrimethylammonium bromides at interfaces between water and different alkanes. J. Colloid Interface Sci. 410, 181–187 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Saien, J., Rezvani Pour, A. & Asadabadi, S. Interfacial tension of the n-hexane–water system under the influence of magnetite nanoparticles and sodium dodecyl sulfate assembly at different temperatures. J. Chem. Eng. Data 59, 1835–1842 (2014).

    Article 
    CAS 

    Google Scholar 

  • Fainerman, V. B. et al. Particular behavior of surface tension at the interface between aqueous solution of surfactant and alkane. Langmuir 35, 15214–15220 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Biswal, N. R., Rangera, N. & Singh, J. K. Effect of different surfactants on the interfacial behavior of the n-hexane–water system in the presence of silica nanoparticles. J. Phys. Chem. B 120, 7265–7274 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeppieri, S., Rodríguez, J. & López De Ramos, A. L. Interfacial tension of alkane + water systems. J. Chem. Eng. Data 46, 1086–1088 (2001).

    Article 
    CAS 

    Google Scholar 

  • Rehfeld, S. J. Adsorption of sodium dodecyl sulfate at various hydrocarbon–water interfaces. J. Phys. Chem. 71, 738–745 (1967).

    Article 
    CAS 

    Google Scholar 

  • Saien, J. & Bahrami, M. Understanding the effect of different size silica nanoparticles and SDS surfactant mixtures on interfacial tension of n-hexane–water. J. Mol. Liq. 224, 158–164 (2016).

    Article 
    CAS 

    Google Scholar 

  • Ontiveros, J. F. et al. Structure–interfacial properties relationship and quantification of the amphiphilicity of well-defined ionic and non-ionic surfactants using the PIT-slope method. J. Colloid Interface Sci. 448, 222–230 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kondo, S. et al. Effect of the hydrophilic–lipophilic balance (HLB) of surfactants included in the post-CMP cleaning chemicals on porous SiOC direct CMP. in 2007 IEEE International Interconnect Technology Conference. 172–174 (2007). https://doi.org/10.1109/IITC.2007.382381.

  • Reham, S. S. et al. Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion. Renew. Sustain. Energy Rev. 52, 1566–1579 (2015).

    Article 
    CAS 

    Google Scholar 

  • Casford, M. T. L., Davies, P. B. & Neivandt, D. J. Adsorption of sodium dodecyl sulfate at the hydrophobic solid/aqueous solution interface in the presence of poly(ethylene glycol): Dependence upon polymer molecular weight. Langmuir 22, 3105–3111 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davies, J. T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. in Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity. Vol. 42. 6–438 (1957).

  • Loh, W.-Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 1, 14–23 (2011).

    Article 

    Google Scholar 

  • Wu, M. et al. Beyond sparsity: Tree regularization of deep models for interpretability. Proc. AAAI Conf. Artif. Intell. 32, 1670–1678 (2018).

    Google Scholar 

  • Bibal, A. & Frénay, B. Interpretability of Machine Learning Models and Representations: An Introduction Interpretability and Explanations of Nonlinear Dimensionality Reduction Mappings View Project Machine Learning and Formal Verification View Project Interpretability of Machine (2016).

  • Rokach, L. & Maimon, O. Decision Trees BT—Data Mining and Knowledge Discovery Handbook (eds. Maimon, O. & Rokach, L.). 165–192 (Springer, 2005). https://doi.org/10.1007/0-387-25465-X_9.

  • Quinlan, J. R. Bagging, Boosting, and C4.5.

  • Khoshgoftaar, T. M. & Allen, E. B. Controlling overfitting in classification—Tree models of software quality. Empir. Softw. Eng. 6, 59–79 (2001).

    Article 
    MATH 

    Google Scholar 

  • Zhou, Z.-H., Wu, J. & Tang, W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137, 239–263 (2002).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Opitz, D. & Maclin, R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999).

    Article 
    MATH 

    Google Scholar 

  • Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3–42 (2006).

    Article 
    MATH 

    Google Scholar 

  • Zheng, H., Mahmoudzadeh, A., Amiri-Ramsheh, B. & Hemmati-Sarapardeh, A. Modeling viscosity of CO2–N2 gaseous mixtures using robust tree-based techniques: Extra tree, random forest, GBoost, and LightGBM. ACS Omega (2023).

  • Schapire, R. E. The strength of weak learnability. Mach. Learn. 5, 197–227 (1990).

    Article 

    Google Scholar 

  • Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 23, 1189–1232 (2001).

    MathSciNet 
    MATH 

    Google Scholar 

  • Utkin, L. V. & Wiencierz, A. Improving over-fitting in ensemble regression by imprecise probabilities. Inf. Sci. (NY) 317, 315–328 (2015).

    Article 

    Google Scholar 

  • Hagan, M. T. & Menhaj, M. B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 989–993 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bauer, E. & Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36, 105–139 (1999).

    Article 

    Google Scholar 

  • Frey, H. C. & Patil, S. R. Identification and review of sensitivity analysis methods. Risk Anal. 22, 553–578 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Castillo, E., Hadi, A. S., Conejo, A. & Fernández-Canteli, A. A general method for local sensitivity analysis with application to regression models and other optimization problems. Technometrics 46, 430–444 (2004).

    Article 
    MathSciNet 

    Google Scholar 

  • Benesty, J., Chen, J., Huang, Y. & Cohen, I. Pearson Correlation Coefficient BT—Noise Reduction in Speech Processing. (eds. Cohen, I., Huang, Y., Chen, J. & Benesty, J.). 1–4 (Springer, 2009). https://doi.org/10.1007/978-3-642-00296-0_5.

  • Chakraborty, T., Chakraborty, I. & Ghosh, S. The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab. J. Chem. 4, 265–270 (2011).

    Article 
    CAS 

    Google Scholar 

  • Al-Sahhaf, T., Elkamel, A., Ahmed, A. S. & Khan, A. R. The influence of temperature, pressure, salinity, and surfactant concentration on the interfacial tension of the n-octane–water system. Chem. Eng. Commun. 192, 667–684 (2005).

    Article 
    CAS 

    Google Scholar 

  • Akhlaghi, N., Riahi, S. & Parvaneh, R. Interfacial tension behavior of a nonionic surfactant in oil/water system; salinity, pH, temperature, and ionic strength effects. J. Pet. Sci. Eng. 198, 108177 (2021).

    Article 
    CAS 

    Google Scholar 

  • Karnanda, W., Benzagouta, M. S., AlQuraishi, A. & Amro, M. M. Effect of temperature, pressure, salinity, and surfactant concentration on IFT for surfactant flooding optimization. Arab. J. Geosci. 6, 3535–3544 (2013).

    Article 
    CAS 

    Google Scholar 

  • Li, Y. et al. Mesoscopic simulation study on the efficiency of surfactants adsorbed at the liquid/liquid interface. Mol. Simul. 31, 1027–1033 (2005).

    Article 
    CAS 

    Google Scholar 

  • Rousseeuw, P.J. & Leroy, A.M. Robust Regression and Outlier Detection (Google Books).

  • Goodall, C. R. 13 Computation using the QR decomposition. Handb. Stat. 9, 467–508 (1993).

    Article 
    MATH 

    Google Scholar 

  • Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701 (2007).

    Article 
    CAS 

    Google Scholar 

  • Amiri-Ramsheh, B., Safaei-Farouji, M., Larestani, A., Zabihi, R. & Hemmati-Sarapardeh, A. Modeling of wax disappearance temperature (WDT) using soft computing approaches: Tree-based models and hybrid models. J. Pet. Sci. Eng. 208, 109774 (2022).

    Article 
    CAS 

    Google Scholar 

  • Amiri-Ramsheh, B., Zabihi, R. & Hemmati-Sarapardeh, A. Modeling wax deposition of crude oils using cascade forward and generalized regression neural networks: Application to crude oil production. Geoenergy Sci. Eng. 1, 211613 (2023).

    Article 

    Google Scholar 

  • Mohammadi, M. R. et al. Modeling hydrogen solubility in alcohols using machine learning models and equations of state. J. Mol. Liq. 346, 117807 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ansari, S. et al. Prediction of hydrogen solubility in aqueous solutions: Comparison of equations of state and advanced machine learning-metaheuristic approaches. Int. J. Hydrogen Energy 47, 37724–37741 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mohammadi, M.-R. et al. Toward predicting SO2 solubility in ionic liquids utilizing soft computing approaches and equations of state. J. Taiwan Inst. Chem. Eng. 133, 104220 (2022).

    Article 
    CAS 

    Google Scholar 

  • Nakhaei-Kohani, R., Taslimi-Renani, E., Hadavimoghaddam, F., Mohammadi, M.-R. & Hemmati-Sarapardeh, A. Modeling solubility of CO2–N2 gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state. Sci. Rep. 12, 1–23 (2022).

    Article 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *