Sagir, M., Mushtaq, M., Tahir, M. S., Tahir, M. B. & Shaik, A. R. Surfactant in Petroleum Industry BT—Surfactants for Enhanced Oil Recovery Applications. (eds. Sagir, M., Mushtaq, M., Tahir, M. S., Tahir, M. B. & Shaik, A. R.).13–40 (Springer, 2020). https://doi.org/10.1007/978-3-030-18785-9_2.
Hirasaki, G. J., Miller, C. A. & Puerto, M. Recent advances in surfactant EOR. SPE J. 16, 889–907 (2011).
Google Scholar
Puerto, M., Hirasaki, G. J., Miller, C. A. & Barnes, J. R. Surfactant systems for EOR in high-temperature, high-salinity environments. SPE J. (Society of Petroleum Engineers) 17, 11–19 (2012).
Google Scholar
Aranda-Bravo, C. G., Romero-Martínez, A., Trejo, A. & Águila-Hernández, J. Interfacial tension and density of water + branched hydrocarbon binary systems in the range 303–343 K. Ind. Eng. Chem. Res. 48, 1476–1483 (2009).
Google Scholar
Bui, B. T. & Tutuncu, A. N. Interfacial tension induced-transport in shale: A pore-scale study. J. Pet. Sci. Eng. 171, 1409–1419 (2018).
Google Scholar
Kim, H. & Burgess, D. J. Prediction of interfacial tension between oil mixtures and water. J. Colloid Interface Sci. 241, 509–513 (2001).
Google Scholar
Reis, P. K. P. & Carvalho, M. S. Pore-scale compositional modeling of gas-condensate flow: Effects of interfacial tension and flow velocity on relative permeability. J. Pet. Sci. Eng. 202, 108454 (2021).
Google Scholar
Iyi, D., Balogun, Y., Oyeneyin, B. & Faisal, N. Numerical modelling of the effect of wettability, interfacial tension and temperature on oil recovery at pore-scale level. J. Pet. Sci. Eng. 201, 108453 (2021).
Google Scholar
Fulcher, R. A. Jr., Ertekin, T. & Stahl, C. D. Effect of capillary number and its constituents on two-phase relative permeability curves. J. Pet. Technol. 37, 249–260 (1985).
Google Scholar
Tang, J. S. Interwell tracer tests to determine residual oil saturation to waterflood at Judy Creek Bhl’a’pool. J. Can. Pet. Technol. 31, 133 (1992).
Google Scholar
Chatzis, I. & Morrow, N. R. Correlation of capillary number relationships for sandstone. Soc. Pet. Eng. J. 24, 555–562 (1984).
Google Scholar
Chatzis, I., Kuntamukkula, M. S. & Morrow, N. R. Effect of capillary number on the microstructure of residual oil in strongly water-wet sandstones. SPE Reserv. Eng. 3, 902–912 (1988).
Google Scholar
Garnes, J. M., Mathisen, A. M., Scheie, A. & Skauge, A. Capillary number relations for some north, sea reservoir sandstones. in SPE/DOE Enhanced Oil Recovery Symposium SPE-20264-MS. https://doi.org/10.2118/20264-MS (1990).
Johannesen, E. B. & Graue, A. Mobilization of remaining oil—Emphasis on capillary number and wettability. in International Oil Conference and Exhibition in Mexico SPE-108724-MS. https://doi.org/10.2118/108724-MS (2007).
Chukwudeme, E. A., Fjelde, I., Abeysinghe, K. & Lohne, A. Effect of interfacial tension on water/oil relative permeability on the basis of history matching to coreflood data. SPE Reserv. Eval. Eng. 17, 37–48 (2014).
Google Scholar
Guo, H. et al. Review of capillary number in chemical enhanced oil recovery. in Society of Petroleum Engineers—SPE Kuwait Oil Gas Show Conference (2015). https://doi.org/10.2118/175172-ms.
Delshad, M., Najafabadi, N. F., Anderson, G. A., Pope, G. A. & Sepehrnoori, K. Modeling wettability alteration by surfactants in naturally fractured reservoirs. SPE Reserv. Eval. Eng. 12, 361–370 (2009).
Google Scholar
Lohne, A. & Fjelde, I. Surfactant flooding in heterogeneous formations. in SPE Improved Oil Recovery Symposium SPE-154178-MS. https://doi.org/10.2118/154178-MS (2012).
Arab, D., Kantzas, A. & Bryant, S. L. Water flooding of oil reservoirs: Effect of oil viscosity and injection velocity on the interplay between capillary and viscous forces. J. Pet. Sci. Eng. 186, 106691 (2020).
Google Scholar
Dang, C. et al. Modeling and optimization of alkaline-surfactant-polymer flooding and hybrid enhanced oil recovery processes. J. Pet. Sci. Eng. 169, 578–601 (2018).
Google Scholar
Nowrouzi, I., Mohammadi, A. H. & Manshad, A. K. Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant. J. Pet. Sci. Eng. 189, 106901 (2020).
Google Scholar
Halliday, H. L. Surfactants: Past, present and future. J. Perinatol. 28, S47–S56 (2008).
Google Scholar
Beverung, C. J., Radke, C. J. & Blanch, H. W. Protein adsorption at the oil/water interface: Characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 81, 59–80 (1999).
Google Scholar
Campanelli, J. R. & Wang, X. Dynamic interfacial tension of surfactant mixtures at liquid–liquid interfaces. J. Colloid Interface Sci. 213, 340–351 (1999).
Google Scholar
Li, S., Liu, J., Hou, J. & Zhang, G. Meniscus-induced motion of oil droplets. Colloids Surf. A Physicochem. Eng. Asp. 469, 252–255 (2015).
Google Scholar
Liu, J., Li, S. & Hou, J. Near-post meniscus-induced migration and assembly of bubbles. Soft Matter 12, 2221–2230 (2016).
Google Scholar
Li, Z. et al. Ultra-low interfacial tension biobased and catanionic surfactants for low permeability reservoirs. J. Mol. Liq. 309, 113099 (2020).
Google Scholar
Zhou, H. et al. Systematic investigation of ionic liquid-type gemini surfactants and their abnormal salt effects on the interfacial tension of a water/model oil system. J. Mol. Liq. 249, 33–39 (2018).
Google Scholar
Zhang, L. et al. Effect of different acidic fractions in crude oil on dynamic interfacial tensions in surfactant/alkali/model oil systems. J. Pet. Sci. Eng. 41, 189–198 (2004).
Google Scholar
Xu, J. et al. Effect of surfactant headgroups on the oil/water interface: An interfacial tension measurement and simulation study. J. Mol. Struct. 1052, 50–56 (2013).
Google Scholar
Moradi, S., Isari, A. A., Bachari, Z. & Mahmoodi, H. Combination of a new natural surfactant and smart water injection for enhanced oil recovery in carbonate rock: Synergic impacts of active ions and natural surfactant concentration. J. Pet. Sci. Eng. 176, 1–10 (2019).
Google Scholar
Mosayebi, A., Angaji, M. T. & Khadiv-Parsi, P. The effect of temperature on the interfacial tension between crude oil and ethoxylated nonylphenols. Pet. Sci. Technol. 34, 1315–1322 (2016).
Google Scholar
Hjelmeland, O. S. & Larrondo, L. E. Experimental investigation of the effects of temperature, pressure, and crude oil composition on interfacial properties. SPE Reserv. Eng. 1, 321–328 (1986).
Google Scholar
Farhadi, H., Ayatollahi, S. & Fatemi, M. The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate. J. Pet. Sci. Eng. 196, 107862 (2021).
Google Scholar
Negin, C., Ali, S. & Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 3, 197–211 (2017).
Google Scholar
Sheng, S. S. et al. Structure-activity relationship of anionic–nonionic surfactant for reducing interfacial tension of crude oil. J. Mol. Liq. 313, 112772 (2020).
Google Scholar
Strey, R. Phase behavior and interfacial curvature in water–oil–surfactant systems. Curr. Opin. Colloid Interface Sci. 1, 402–410 (1996).
Google Scholar
Kamal, M. S., Hussein, I. A. & Sultan, A. S. Review on surfactant flooding: Phase behavior, retention, IFT, and field applications. Energy Fuels 31, 7701–7720 (2017).
Google Scholar
Lee, B. B., Ravindra, P. & Chan, E. S. A critical review: Surface and interfacial tension measurement by the drop weight method. Chem. Eng. Commun. 195, 889–924. https://doi.org/10.1080/00986440801905056 (2008).
Google Scholar
Yildirim, O. E., Xu, Q. & Basaran, O. A. Analysis of the drop weight method. Phys. Fluids 17, 062107 (2005).
Google Scholar
Berry, J. D., Neeson, M. J., Dagastine, R. R., Chan, D. Y. C. & Tabor, R. F. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226–237 (2015).
Google Scholar
Touhami, Y., Neale, G. H., Hornof, V. & Khalfalah, H. A modified pendant drop method for transient and dynamic interfacial tension measurement. Colloids Surf. A Physicochem. Eng. Asp. 112, 31–41 (1996).
Google Scholar
Garandet, J. P., Vinet, B. & Gros, P. Considerations on the pendant drop method: A new look at Tate’s law and Harkins’ correction factor. J. Colloid Interface Sci. 165, 351–354 (1994).
Google Scholar
Viades-Trejo, J. & Gracia-Fadrique, J. Spinning drop method: From Young–Laplace to Vonnegut. Colloids Surf. A Physicochem. Eng. Asp. 302, 549–552 (2007).
Google Scholar
Joseph, D. D. et al. A spinning drop tensioextensometer. J. Rheol. (N. Y. N. Y) 36, 621 (1998).
Google Scholar
Cayias, J. L., Schechter, R. S. & Wade, W. H. Measurement of low interfacial tension via the spinning drop technique. ACS Symp. Ser. https://doi.org/10.1021/BK-1975-0008.CH017 (1974).
Google Scholar
Fainerman, V. B., Zholob, S. A., Lucassen-Reynders, E. H. & Miller, R. Comparison of various models describing the adsorption of surfactant molecules capable of interfacial reorientation. J. Colloid Interface Sci. 261, 180–183 (2003).
Google Scholar
Bahramian, A. & Zarbakhsh, A. Interfacial equation of state for ionized surfactants at oil/water interfaces. Soft Matter 11, 6482–6491 (2015).
Google Scholar
Kairaliyeva, T. et al. Surface tension and adsorption studies by drop profile analysis tensiometry. J. Surfactants Deterg. 20, 1225–1241 (2017).
Google Scholar
Ross, S. & Morrison, I. D. On the alleged ideality of Szyszkowski–Langmuir adsorption. J. Colloid Interface Sci. 91, 244–247 (1983).
Google Scholar
Rusanov, A. I. On the thermodynamics of thin films. The Frumkin equation. Colloid J. 81, 741–746 (2019).
Google Scholar
Markin, V. S., Volkova-Gugeshashvili, M. I. & Volkov, A. G. Adsorption at liquid interfaces: The generalized Langmuir isotherm and interfacial structure. J. Phys. Chem. B 110, 11415–11420 (2006).
Google Scholar
Mulqueen, M. & Blankschtein, D. Theoretical and experimental investigation of the equilibrium oil−water interfacial tensions of solutions containing surfactant mixtures. Langmuir 18, 365–376 (2002).
Google Scholar
Mulqueen, M. & Blankschtein, D. Theoretical and experimental investigation of the equilibrium oil–water interfacial tensions of solutions containing surfactant mixtures. Langmuir 18, 365–376 (2002).
Google Scholar
Nikseresht, S., Riazi, M., Amani, M. J. & Farshchi Tabrizi, F. Prediction of oil/water interfacial tension containing ionic surfactants. Colloids Interface Sci. Commun. 34, 100217 (2020).
Google Scholar
Chen, H. et al. A new prediction model of CO2 diffusion coefficient in crude oil under reservoir conditions based on BP neural network. Energy 239, 122286 (2022).
Google Scholar
Zhang, L. et al. Prediction of coal self-ignition tendency using machine learning. Fuel 325, 124832 (2022).
Google Scholar
Tabasi, S. et al. Optimized machine learning models for natural fractures prediction using conventional well logs. Fuel 326, 124952 (2022).
Google Scholar
Ameli, F., Hemmati-Sarapardeh, A., Schaffie, M., Husein, M. M. & Shamshirband, S. Modeling interfacial tension in N2/n-alkane systems using corresponding state theory: Application to gas injection processes. Fuel 222, 779–791 (2018).
Google Scholar
Ameli, F., Hemmati-Sarapardeh, A., Tatar, A., Zanganeh, A. & Ayatollahi, S. Modeling interfacial tension of normal alkane-supercritical CO2 systems: Application to gas injection processes. Fuel 253, 1436–1445 (2019).
Google Scholar
Amooie, M. A. et al. Data-driven modeling of interfacial tension in impure CO2-brine systems with implications for geological carbon storage. Int. J. Greenh. Gas Control 90, 102811 (2019).
Google Scholar
Mehrjoo, H., Riazi, M., Nait Amar, M. & Hemmati-Sarapardeh, A. Modeling interfacial tension of methane-brine systems at high pressure and high salinity conditions. J. Taiwan Inst. Chem. Eng. 114, 125–141 (2020).
Google Scholar
Nait Amar, M., Shateri, M., Hemmati-Sarapardeh, A. & Alamatsaz, A. Modeling oil-brine interfacial tension at high pressure and high salinity conditions. J. Pet. Sci. Eng. 183, 106413 (2019).
Google Scholar
Rostami, A., Ebadi, H., Arabloo, M., Meybodi, M. K. & Bahadori, A. Toward genetic programming (GP) approach for estimation of hydrocarbon/water interfacial tension. J. Mol. Liq. 230, 175–189 (2017).
Google Scholar
Rouhibakhsh, K. & Darvish, H. Utilization of fuzzy C-means algorithm as a novel predictive tool for estimation of interfacial tension of hydrocarbon and brine. Pet. Sci. Technol. 36, 1107–1112 (2018).
Google Scholar
Kiomarsiyan, A. & Esfandiarian, A. Applying grid partitioning based fuzzy inference system method to estimate interfacial tension of brine and hydrocarbon. Pet. Sci. Technol. 37, 1620–1625 (2019).
Google Scholar
Abooali, D., Sobati, M. A., Shahhosseini, S. & Assareh, M. A new empirical model for estimation of crude oil/brine interfacial tension using genetic programming approach. J. Pet. Sci. Eng. 173, 187–196 (2019).
Google Scholar
Pradines, V. et al. Adsorption of alkyl trimethylammonium bromides at the water/air and water/hexane interfaces. Colloids Surf. A Physicochem. Eng. Asp. 371, 22–28 (2010).
Google Scholar
Mucic, N., Kovalchuk, N. M., Aksenenko, E. V., Fainerman, V. B. & Miller, R. Adsorption layer properties of alkyltrimethylammonium bromides at interfaces between water and different alkanes. J. Colloid Interface Sci. 410, 181–187 (2013).
Google Scholar
Saien, J., Rezvani Pour, A. & Asadabadi, S. Interfacial tension of the n-hexane–water system under the influence of magnetite nanoparticles and sodium dodecyl sulfate assembly at different temperatures. J. Chem. Eng. Data 59, 1835–1842 (2014).
Google Scholar
Fainerman, V. B. et al. Particular behavior of surface tension at the interface between aqueous solution of surfactant and alkane. Langmuir 35, 15214–15220 (2019).
Google Scholar
Biswal, N. R., Rangera, N. & Singh, J. K. Effect of different surfactants on the interfacial behavior of the n-hexane–water system in the presence of silica nanoparticles. J. Phys. Chem. B 120, 7265–7274 (2016).
Google Scholar
Zeppieri, S., Rodríguez, J. & López De Ramos, A. L. Interfacial tension of alkane + water systems. J. Chem. Eng. Data 46, 1086–1088 (2001).
Google Scholar
Rehfeld, S. J. Adsorption of sodium dodecyl sulfate at various hydrocarbon–water interfaces. J. Phys. Chem. 71, 738–745 (1967).
Google Scholar
Saien, J. & Bahrami, M. Understanding the effect of different size silica nanoparticles and SDS surfactant mixtures on interfacial tension of n-hexane–water. J. Mol. Liq. 224, 158–164 (2016).
Google Scholar
Ontiveros, J. F. et al. Structure–interfacial properties relationship and quantification of the amphiphilicity of well-defined ionic and non-ionic surfactants using the PIT-slope method. J. Colloid Interface Sci. 448, 222–230 (2015).
Google Scholar
Kondo, S. et al. Effect of the hydrophilic–lipophilic balance (HLB) of surfactants included in the post-CMP cleaning chemicals on porous SiOC direct CMP. in 2007 IEEE International Interconnect Technology Conference. 172–174 (2007). https://doi.org/10.1109/IITC.2007.382381.
Reham, S. S. et al. Study on stability, fuel properties, engine combustion, performance and emission characteristics of biofuel emulsion. Renew. Sustain. Energy Rev. 52, 1566–1579 (2015).
Google Scholar
Casford, M. T. L., Davies, P. B. & Neivandt, D. J. Adsorption of sodium dodecyl sulfate at the hydrophobic solid/aqueous solution interface in the presence of poly(ethylene glycol): Dependence upon polymer molecular weight. Langmuir 22, 3105–3111 (2006).
Google Scholar
Davies, J. T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent. in Gas/Liquid and Liquid/Liquid Interface. Proceedings of the International Congress of Surface Activity. Vol. 42. 6–438 (1957).
Loh, W.-Y. Classification and regression trees. WIREs Data Min. Knowl. Discov. 1, 14–23 (2011).
Google Scholar
Wu, M. et al. Beyond sparsity: Tree regularization of deep models for interpretability. Proc. AAAI Conf. Artif. Intell. 32, 1670–1678 (2018).
Bibal, A. & Frénay, B. Interpretability of Machine Learning Models and Representations: An Introduction Interpretability and Explanations of Nonlinear Dimensionality Reduction Mappings View Project Machine Learning and Formal Verification View Project Interpretability of Machine (2016).
Rokach, L. & Maimon, O. Decision Trees BT—Data Mining and Knowledge Discovery Handbook (eds. Maimon, O. & Rokach, L.). 165–192 (Springer, 2005). https://doi.org/10.1007/0-387-25465-X_9.
Quinlan, J. R. Bagging, Boosting, and C4.5.
Khoshgoftaar, T. M. & Allen, E. B. Controlling overfitting in classification—Tree models of software quality. Empir. Softw. Eng. 6, 59–79 (2001).
Google Scholar
Zhou, Z.-H., Wu, J. & Tang, W. Ensembling neural networks: Many could be better than all. Artif. Intell. 137, 239–263 (2002).
Google Scholar
Opitz, D. & Maclin, R. Popular ensemble methods: An empirical study. J. Artif. Intell. Res. 11, 169–198 (1999).
Google Scholar
Geurts, P., Ernst, D. & Wehenkel, L. Extremely randomized trees. Mach. Learn. 63, 3–42 (2006).
Google Scholar
Zheng, H., Mahmoudzadeh, A., Amiri-Ramsheh, B. & Hemmati-Sarapardeh, A. Modeling viscosity of CO2–N2 gaseous mixtures using robust tree-based techniques: Extra tree, random forest, GBoost, and LightGBM. ACS Omega (2023).
Schapire, R. E. The strength of weak learnability. Mach. Learn. 5, 197–227 (1990).
Google Scholar
Friedman, J. H. Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002).
Google Scholar
Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 23, 1189–1232 (2001).
Google Scholar
Utkin, L. V. & Wiencierz, A. Improving over-fitting in ensemble regression by imprecise probabilities. Inf. Sci. (NY) 317, 315–328 (2015).
Google Scholar
Hagan, M. T. & Menhaj, M. B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 989–993 (1994).
Google Scholar
Bauer, E. & Kohavi, R. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn. 36, 105–139 (1999).
Google Scholar
Frey, H. C. & Patil, S. R. Identification and review of sensitivity analysis methods. Risk Anal. 22, 553–578 (2002).
Google Scholar
Castillo, E., Hadi, A. S., Conejo, A. & Fernández-Canteli, A. A general method for local sensitivity analysis with application to regression models and other optimization problems. Technometrics 46, 430–444 (2004).
Google Scholar
Benesty, J., Chen, J., Huang, Y. & Cohen, I. Pearson Correlation Coefficient BT—Noise Reduction in Speech Processing. (eds. Cohen, I., Huang, Y., Chen, J. & Benesty, J.). 1–4 (Springer, 2009). https://doi.org/10.1007/978-3-642-00296-0_5.
Chakraborty, T., Chakraborty, I. & Ghosh, S. The methods of determination of critical micellar concentrations of the amphiphilic systems in aqueous medium. Arab. J. Chem. 4, 265–270 (2011).
Google Scholar
Al-Sahhaf, T., Elkamel, A., Ahmed, A. S. & Khan, A. R. The influence of temperature, pressure, salinity, and surfactant concentration on the interfacial tension of the n-octane–water system. Chem. Eng. Commun. 192, 667–684 (2005).
Google Scholar
Akhlaghi, N., Riahi, S. & Parvaneh, R. Interfacial tension behavior of a nonionic surfactant in oil/water system; salinity, pH, temperature, and ionic strength effects. J. Pet. Sci. Eng. 198, 108177 (2021).
Google Scholar
Karnanda, W., Benzagouta, M. S., AlQuraishi, A. & Amro, M. M. Effect of temperature, pressure, salinity, and surfactant concentration on IFT for surfactant flooding optimization. Arab. J. Geosci. 6, 3535–3544 (2013).
Google Scholar
Li, Y. et al. Mesoscopic simulation study on the efficiency of surfactants adsorbed at the liquid/liquid interface. Mol. Simul. 31, 1027–1033 (2005).
Google Scholar
Rousseeuw, P.J. & Leroy, A.M. Robust Regression and Outlier Detection (Google Books).
Goodall, C. R. 13 Computation using the QR decomposition. Handb. Stat. 9, 467–508 (1993).
Google Scholar
Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701 (2007).
Google Scholar
Amiri-Ramsheh, B., Safaei-Farouji, M., Larestani, A., Zabihi, R. & Hemmati-Sarapardeh, A. Modeling of wax disappearance temperature (WDT) using soft computing approaches: Tree-based models and hybrid models. J. Pet. Sci. Eng. 208, 109774 (2022).
Google Scholar
Amiri-Ramsheh, B., Zabihi, R. & Hemmati-Sarapardeh, A. Modeling wax deposition of crude oils using cascade forward and generalized regression neural networks: Application to crude oil production. Geoenergy Sci. Eng. 1, 211613 (2023).
Google Scholar
Mohammadi, M. R. et al. Modeling hydrogen solubility in alcohols using machine learning models and equations of state. J. Mol. Liq. 346, 117807 (2022).
Google Scholar
Ansari, S. et al. Prediction of hydrogen solubility in aqueous solutions: Comparison of equations of state and advanced machine learning-metaheuristic approaches. Int. J. Hydrogen Energy 47, 37724–37741 (2022).
Google Scholar
Mohammadi, M.-R. et al. Toward predicting SO2 solubility in ionic liquids utilizing soft computing approaches and equations of state. J. Taiwan Inst. Chem. Eng. 133, 104220 (2022).
Google Scholar
Nakhaei-Kohani, R., Taslimi-Renani, E., Hadavimoghaddam, F., Mohammadi, M.-R. & Hemmati-Sarapardeh, A. Modeling solubility of CO2–N2 gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state. Sci. Rep. 12, 1–23 (2022).
Google Scholar
