Machine learning and bayesian network based on fuzzy AHP framework for risk assessment in process units

Machine Learning


  • Abdullah, K. H. & Sofyan, D. Machine learning in safety and health research: a scientometric analysis. Int. J. Inf. Sci. Manag. 21(1), 17–37 (2023).

    Google Scholar 

  • Shin, J., Kim, Y. & Kim, C. The perception of occupational safety and health (OSH) regulation and innovation efficiency in the construction industry: evidence from South Korea. Int. J. Environ. Res. Public Health 18(5), 2334 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alves, A. M. S., Gonçalves Filho, C., Santos, Nd. M. & Souki, G. Q. Factors influencing occupational accidents: a multidimensional analysis in the electricity sector. Gestão & Produção 27, e4609 (2020).

    Article 

    Google Scholar 

  • Alizadeh, S. S. Estimation of economic costs of accidents at work in Iran: A case study of occupational accidents in 2012. Iran Occup. Health 12(1), 12–19 (2015).

    MathSciNet 

    Google Scholar 

  • Bahr, N. J. System Safety Engineering and Risk Assessment: A Practical Approach (CRC Press, 2014).

    Google Scholar 

  • Zio, E. The future of risk assessment. Reliab. Eng. Syst. Saf. 177, 176–190 (2018).

    Article 

    Google Scholar 

  • Kh, A. Epidemiological study of occupational accidents in Yazd combined cycle power plant in years 1383 to 1390. Occup. Med. Q. J. 7(4), 88–97 (2016).

    Google Scholar 

  • Atmaca, E. & Basar, H. B. Evaluation of power plants in Turkey using Analytic Network Process (ANP). Energy 44(1), 555–563 (2012).

    Article 

    Google Scholar 

  • Darwish, M. A., Al Awadhi, F. M. & Bin Amer, A. O. Combining the nuclear power plant steam cycle with gas turbines. Energy 35(12), 4562–4571 (2010).

    Article 

    Google Scholar 

  • Borgheipour, H. et al. Health safety and environmental hazards of the chlorination unit of combined cycle power plants by using HAZOP and bow-tie methods. Occup. Hygiene Health Promot. (2019).

  • Torres, M. J. F. & Beviá, F. R. Chlorine use reduction in nuclear or conventional power plants: A combined cooling-and-stripping tower for coastal power plants. J. Clean. Prod. 26, 1–8 (2012).

    Article 

    Google Scholar 

  • Corporation, B. V. White’s Handbook of Chlorination and Alternative Disinfectants (Wiley, 2011).

    Google Scholar 

  • George, P. G. & Renjith, V. Evolution of safety and security risk assessment methodologies towards the use of bayesian networks in process industries. Process Saf. Environ. Prot. 149, 758–775 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cagno, E., Caron, F. & Mancini, M. Risk analysis in plant commissioning: The multilevel hazop. Reliab. Eng. Syst. Saf. 77(3), 309–323 (2002).

    Article 

    Google Scholar 

  • Lee, K. M., Yoo, J., Kim, S.-W., Lee, J.-H. & Hong, J. Autonomic machine learning platform. Int. J. Inf. Manag. 49, 491–501 (2019).

    Google Scholar 

  • Moradi Hanifi, S., Keighobodi, E. & Tabatabaei, S. H. Machine learning and its application regarding risk assessment and identification in complex processes. Arch. Occup. Health 6(4), 1318–1320 (2022).

    Google Scholar 

  • Duan, Y., Edwards, J. S. & Dwivedi, Y. K. Artificial intelligence for decision making in the era of big data—evolution, challenges and research agenda. Int. J. Inf. Manag. 48, 63–71 (2019).

    Google Scholar 

  • Fonseca, D. P., Wanke, P. F. & Correa, H. L. A two-stage fuzzy neural approach for credit risk assessment in a Brazilian credit card company. Appl. Soft Comput. 92, 106329 (2020).

    Article 

    Google Scholar 

  • Gurtu, A. & Johny, J. Supply chain risk management: Literature review. Risks 9(1), 16 (2021).

    Article 

    Google Scholar 

  • Paltrinieri, N., Comfort, L. & Reniers, G. Learning about risk: Machine learning for risk assessment. Saf. Sci. 118, 475–486 (2019).

    Article 

    Google Scholar 

  • Witten, I. H., Frank, E., Hall, M. A., Pal, C. J. & Data, M. editors. Practical machine learning tools and techniques. Data Mining. (Morgan Kaufmann Publishers, 2005).

  • Zhou, Z.-H. Machine Learning (Springer, 2021).

    Book 

    Google Scholar 

  • Sarker, I. H. Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2(3), 160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mienye, I. D. & Sun, Y. A survey of ensemble learning: Concepts, algorithms, applications, and prospects. IEEE Access. 10, 99129–99149 (2022).

    Article 

    Google Scholar 

  • Bevilacqua, M., Ciarapica, F. E. & Giacchetta, G. Industrial and occupational ergonomics in the petrochemical process industry: A regression trees approach. Accid. Anal. Prev. 40(4), 1468–1479 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, K., Cho, J. & Kim, S.-Y. Machine learning-based categorization of source terms for risk assessment of nuclear power plants. Nucl. Eng. Technol. 54(9), 3336–3346 (2022).

    Article 
    CAS 

    Google Scholar 

  • Agarwal, V. et al. Machine learning and economic models to enable risk-informed condition based maintenance of a nuclear plant asset. Idaho National Lab (INL), Idaho Falls, ID (United States) (2021).

  • Xue, G., Liu, S., Ren, L. & Gong, D. Risk assessment of utility tunnels through risk interaction-based deep learning. Reliab. Eng. Syst. Saf. 241, 109626 (2024).

    Article 

    Google Scholar 

  • Kandel, R. & Baroud, H. A data-driven risk assessment of Arctic maritime incidents: Using machine learning to predict incident types and identify risk factors. Reliab. Eng. Syst. Saf. 243, 109779 (2024).

    Article 

    Google Scholar 

  • Sharifani, K. & Amini, M. Machine learning and deep learning: A review of methods and applications. World Inf. Technol. Eng. J. 10(07), 3897–3904 (2023).

    Google Scholar 

  • Dong, X., Yu, Z., Cao, W., Shi, Y. & Ma, Q. A survey on ensemble learning. Front. Comput. Sci. 14, 241–258 (2020).

    Article 

    Google Scholar 

  • Khan, F. et al. Dynamic risk management: A contemporary approach to process safety management. Curr. Opin. Chem. Eng. 14, 9–17 (2016).

    Article 

    Google Scholar 

  • Meel, A. & Seider, W. D. Plant-specific dynamic failure assessment using Bayesian theory. Chem. Eng. Sci. 61(21), 7036–7056 (2006).

    Article 
    CAS 

    Google Scholar 

  • Rausand, M. Risk Assessment: Theory, Methods, and Applications (Wiley, UK, 2013).

    Google Scholar 

  • Kharajou B, Ahmadi H, Rafiei M, Hanifi S. Quantitative risk estimation of CNG station by using fuzzy bayesian networks and consequence modeling. Scientific Reports. 2024;14.

  • Kalantarnia, M., Khan, F. & Hawboldt, K. Dynamic risk assessment using failure assessment and Bayesian theory. J. Loss Prev. Process Ind. 22(5), 600–606 (2009).

    Article 

    Google Scholar 

  • Ramzan, N., Compart, F. & Witt, W. Methodology for the generation and evaluation of safety system alternatives based on extended Hazop. Process Saf. Progress. 26(1), 35–42 (2007).

    Article 

    Google Scholar 

  • Ferdous, R., Khan, F., Sadiq, R., Amyotte, P. & Veitch, B. Handling and updating uncertain information in bow-tie analysis. J. Loss Prev. Process Ind. 25(1), 8–19 (2012).

    Article 

    Google Scholar 

  • Qiao, W. et al. On the causation analysis for hazards involved in the engine room fire-fighting system by integrating STPA and BN. Ocean Eng. 288, 116073 (2023).

    Article 

    Google Scholar 

  • Wang, Y. F., Qin, T., Li, B., Sun, X. F. & Li, Y. L. Fire probability prediction of offshore platform based on Dynamic Bayesian Network. Ocean Eng. 145, 112–123 (2017).

    Article 
    ADS 

    Google Scholar 

  • Zarei, E., Khakzad, N., Cozzani, V. & Reniers, G. Safety analysis of process systems using Fuzzy Bayesian Network (FBN). J. Loss Prev. Process Ind. 57, 7–16 (2019).

    Article 

    Google Scholar 

  • Ab Rahim, M. S., Reniers, G., Yang, M. & Bajpai, S. Risk assessment methods for process safety, process security and resilience in the chemical process industry: A thorough literature review. J. Loss Prev. Process Ind. 88, 105274 (2024).

    Article 
    CAS 

    Google Scholar 

  • Adeniran, I. A., Efunniyi, C. P., Osundare, O. S. & Abhulimen, A. O. Enhancing security and risk management with predictive analytics: A proactive approach. Int. J. Manag. Entrep. Res. 6(8), 32–40 (2024).

    Google Scholar 

  • Mitrakas, C., Xanthopoulos, A. & Koulouriotis, D. Techniques and models for addressing occupational risk using fuzzy logic, neural networks, machine learning, and genetic algorithms: A review and meta-analysis. Appl. Sci. 15(4), 1909 (2025).

    Article 
    CAS 

    Google Scholar 

  • Alauddin, M., Amyotte, P., Schrader, A., Addo, A. & Kamil, M. Z. A HAZOP of dust explosion testing and explosibility modelling using artificial neural networks. Can. J. Chem. Eng. 103(1), 110–125 (2025).

    Article 
    CAS 

    Google Scholar 

  • Contessotto, F. Towards phenomena-based HAZOP support.

  • Bozorgi, A., Roozbahani, A., Hashemy Shahdany, S. M. & Abbassi, R. Developing a risk management framework for agricultural water systems using fuzzy dynamic bayesian networks and decision-making models. Water Resour. Manag. 1–23 (2024).

  • Li, C.-y, Wang, J.-h, Zhi, Y.-r, Wang, Z.-r & Gong, J.-h. Simulation of the chlorination process safety management system based on system dynamics approach. Procedia Eng. 211, 332–342 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bassey, M. E. Application of Data Mining and Machine Learning Techniques for Cause Analysis and Severity Prediction of Loss of Containment Incidents in Offshore Oil and Gas Facilities (The George Washington University, 2023).

    Google Scholar 

  • Li, X., Wang, J. & Chen, G. A machine learning methodology for probabilistic risk assessment of process operations: A case of subsea gas pipeline leak accidents. Process Saf. Environ. Prot. 165, 959–968 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wu, S., Zhang, L., Fan, J. & Zhou, Y. Dynamic risk analysis of hydrogen sulfide leakage for offshore natural gas wells in MPD phases. Process Saf. Environ. Prot. 122, 339–351 (2019).

    Article 
    CAS 

    Google Scholar 

  • Wang, F. & Gu, W. Intelligent HAZOP analysis method based on data mining. J. Loss Prev. Process Ind. 80, 104911 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ekramipooya, A., Boroushaki, M. & Rashtchian, D. Predicting possible recommendations related to causes and consequences in the HAZOP study worksheet using natural language processing and machine learning: BERT, clustering, and classification. J. Loss Prev. Process Ind. 89, 105310 (2024).

    Article 

    Google Scholar 

  • Single, J. I., Schmidt, J. & Denecke, J. computer-aided hazop: Ontologies and ai for hazard identification and propagation. In Computer Aided Chemical Engineering vol. 48 1783–1788 (Elsevier, 2020).

  • Pirbalouti, R. G., Behnam, B. & Dehkordi, M. K. A risk-based approach to identify safety-critical equipment in process industries. Results Eng. 20, 101448 (2023).

    Article 

    Google Scholar 

  • Guo, X., Ji, J., Khan, F., Ding, L. & Tong, Q. A novel fuzzy dynamic Bayesian network for dynamic risk assessment and uncertainty propagation quantification in uncertainty environment. Saf. Sci. 141, 105285 (2021).

    Article 

    Google Scholar 

  • Liu, Z., Ma, Q., Cai, B., Liu, Y. & Zheng, C. Risk assessment on deepwater drilling well control based on dynamic Bayesian network. Process Saf. Environ. Prot. 149, 643–654 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, L., Xu, K., Yao, X. & Chen, S. Probabilistic analysis of aluminium production explosion accidents based on a fuzzy Bayesian network. J. Loss Prev. Process Ind. 73, 104618 (2021).

    Article 
    CAS 

    Google Scholar 

  • Li, M., Wang, D. & Shan, H. Risk assessment of mine ignition sources using fuzzy Bayesian network. Process Saf. Environ. Prot. 125, 297–306 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xue, J., Yip, T. L., Wu, B., Wu, C. & Van Gelder, P. A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China. Renew. Energy 172, 897–917 (2021).

    Article 

    Google Scholar 

  • Gul, M., Yucesan, M. & Karci, C. A stratified Bayesian decision-making model for occupational risk assessment of production facilities. Eng. Appl. Artif. Intell. 133, 108283 (2024).

    Article 

    Google Scholar 

  • Marhavilas, P. K., Filippidis, M., Koulinas, G. K. & Koulouriotis, D. E. A HAZOP with MCDM based risk-assessment approach: Focusing on the deviations with economic/health/environmental impacts in a process industry. Sustainability 12(3), 993 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Penelas, Ad. J. & Pires, J. C. Hazop analysis in terms of safety operations processes for oil production units: A case study. Appl. Sci. 11(21), 10210 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mokhtarname, R. et al. Application of multivariable process monitoring techniques to HAZOP studies of complex processes. J. Loss Prev. Process Ind. 74, 104674 (2022).

    Article 
    CAS 

    Google Scholar 

  • Heo, K.-N. et al. Development and validation of a machine learning-based fall-related injury risk prediction model using nationwide claims database in Korean community-dwelling older population. BMC Geriatr. 23(1), 830 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hegde, J. & Rokseth, B. Applications of machine learning methods for engineering risk assessment—A review. Saf. Sci. 122, 104492 (2020).

    Article 

    Google Scholar 

  • Mazumder, R. K., Salman, A. M. & Li, Y. Failure risk analysis of pipelines using data-driven machine learning algorithms. Struct. Saf. 89, 102047 (2021).

    Article 

    Google Scholar 

  • Mangalathu, S., Hwang, S.-H. & Jeon, J.-S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 219, 110927 (2020).

    Article 

    Google Scholar 

  • Robles-Velasco, A., Cortés, P., Muñuzuri, J. & Onieva, L. Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliab. Eng. Syst. Saf. 196, 106754 (2020).

    Article 

    Google Scholar 

  • Sun, Z. & Müller, D. A framework for modeling payments for ecosystem services with agent-based models, Bayesian belief networks and opinion dynamics models. Environ. Model. Softw. 45, 15–28 (2013).

    Article 

    Google Scholar 



  • Source link