Leveraging insights from neuroscience to build adaptive artificial intelligence

Machine Learning


  • Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Scott, S. H. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5, 532–546 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226–1235 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Friston, K. J. et al. World model learning and inference. Neural Netw. 144, 573–590 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2, 79–87 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rajesh, P. N. R. A sensory-motor theory of the neocortex. Nat. Neurosci. 27, 1221–1235 (2024).

    Article 

    Google Scholar 

  • Mathis, M. W., Mathis, A. & Uchida, N. Somatosensory cortex plays an essential role in forelimb motor adaptation in mice. Neuron 93, 1493–1503 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Takei, T., Lomber, S. G., Cook, D. J. & Scott, S. H. Transient deactivation of dorsal premotor cortex or parietal area 5 impairs feedback control of the limb in macaques. Curr. Biol. 31, 1476–1487 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sternberg, R. J. A theory of adaptive intelligence and its relation to general intelligence. J. Intell. 7, 23 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grossberg, S. A path toward explainable AI and autonomous adaptive intelligence: deep learning, adaptive resonance, and models of perception, emotion, and action. Front. Neurorobot. 14, 36 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M. M. Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mathis, M. W. The neocortical column as a universal template for perception and world-model learning. Nat. Rev. Neurosci. 24, 3 (2022).

    Article 

    Google Scholar 

  • Manley, J. et al. Simultaneous, cortex-wide dynamics of up to 1 million neurons reveal unbounded scaling of dimensionality with neuron number. Neuron 112, 1694–1709 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Siegle, J. H. et al. A survey of spiking activity reveals a functional hierarchy of mouse corticothalamic visual areas. Nature 592, 86–92 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stevenson, I. H. & Kording, K. P. How advances in neural recording affect data analysis. Nat. Neurosci. 14, 139–142 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mathis, M. W., Rotondo, A. P., Tolias, A., Change, E. & Mathis, A. Decoding the brain: from neural representations to mechanistic models. Cell 87, 5814–5832 (2024).

    Article 

    Google Scholar 

  • Lecoq, J. A., Orlova, N. & Grewe, B. F. Wide. Fast. Deep: recent advances in multiphoton microscopy of in vivo neuronal activity. J. Neurosci. 39, 9042–9052 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Urai, A. E., Doiron, B., Leifer, A. M. & Churchland, A. K. Large-scale neural recordings call for new insights to link brain and behavior. Nat. Neurosci. 25, 11–19 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, H. & Fang, Y. Recent developments in implantable neural probe technologies. MRS Bull. 48, 484–494 (2023).

    Article 

    Google Scholar 

  • Mathis, M. W. & Mathis, A. Deep learning tools for the measurement of animal behavior in neuroscience. Curr. Opin. Neurobiol. 60, 1–11 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tsutsui-Kimura, I. et al. Dopamine in the tail of the striatum facilitates avoidance in threat–reward conflicts. Nat. Neurosci. 28, 795–810 (2025).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lopes, G. et al. Creating and controlling visual environments using bonvision. eLife 10, e65541 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rosenberg, M., Zhang, T., Perona, P. & Meister, M. Mice in a labyrinth show rapid learning, sudden insight, and efficient exploration. eLife 10, e66175 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shemesh, Y., Benjamin, A., Shoshani-Haye, K., Yizhar, O. & Chen, A. Studying dominance and aggression requires ethologically relevant paradigms. Curr. Opin. Neurobiol. 86, 102879 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hao, Y., Thomas, A. M. & Nuo, L. Fully autonomous mouse behavioral and optogenetic experiments in home-cage. eLife 10, e66112 (2020).

    Article 

    Google Scholar 

  • Skyberg, R. J. & Niell, C. M. Natural visual behavior and active sensing in the mouse. Curr. Opin. Neurobiol. 86, 102882 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Palatucci, M., Pomerleau, D. A., Hinton, G. E. & Mitchell, T. M. Zero-shot learning with semantic output codes. Proceedings of the Advances in Neural Information Processing Systems Vol. 22 (2009).

  • El-Gaby, M. et al. A cellular basis for mapping behavioural structure. Nature 636, 671–680 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Thorndike, E.L. Animal Intelligence: An Experimental Study of the Associative Processes in Animals (Columbia University Press, 1898).

  • Hunt, G. R. Manufacture and use of hook-tools by New Caledonian crows. Nature 379, 249–251 (1996).

    Article 
    CAS 

    Google Scholar 

  • Rutz, C. & St. Clair, J. J. The evolutionary origins and ecological context of tool use in New Caledonian crows. Behav. Processes 89, 153–165 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Dyer, F. C. & Seeley, T. D. Dance dialects and foraging range in three Asian honey bee species. Behav. Ecol. Sociobiol. 28, 227–233 (1991).

    Article 

    Google Scholar 

  • Alem, S. et al. Associative mechanisms allow for social learning and cultural transmission of string pulling in an insect. PLoS Biol. 14, e1002564 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Proops, L., Grounds, K., Smith, A. V. & McComb, K. Animals remember previous facial expressions that specific humans have exhibited. Curr. Biol. 28, 1428–1432 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kaminski, J., Call, J. & Fischer, J. Word learning in a domestic dog: evidence for ‘fast mapping’. Science 304, 1682–1683 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Beyret, B. et al. The animal-AI environment: training and testing animal-like artificial cognition. Preprint at arXiv https://doi.org/10.48550/arXiv.1909.07483 (2019).

  • Williams, A. H. et al. Unsupervised discovery of demixed, low-dimensional neural dynamics across multiple timescales through tensor component analysis. Neuron 98, 1099–1115 (2017).

    Article 

    Google Scholar 

  • Sorscher, B., Ganguli, S. & Sompolinsky, H. Neural representational geometry underlies few-shot concept learning. Proc. Natl Acad. Sci. USA 119, e2200800119 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint behavioural and neural analysis. Nature 617, 360–368 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • McDougle, S. D., Bond, K. M. & Taylor, J. A. Explicit and implicit processes constitute the fast and slow processes of sensori-motor learning. J. Neurosci. 35, 9568–9579 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Krakauer, J. W. & Mazzoni, P. Human sensorimotor learning: adaptation, skill, and beyond. Curr. Opin. Neurobiol. 21, 636–644 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Izawa, J. & Shadmehr, R. Learning from sensory and reward prediction errors during motor adaptation. PLoS Comput. Biol. 7, e1002012 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Trial-by-trial motor cortical correlates of a rapidly adapting visuomotor internal model. J. Neurosci. 37, 1721–1732 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shadmehr, R. & Mussa-Ivaldi, F. A. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bizzi, D. E., Accornero, N., Chapple, W. & Hogan, N. Arm trajectory formation in monkeys. Exp. Brain Res. 46, 139–143 (2013).

    Article 

    Google Scholar 

  • DeWolf, T., Schneider, S., Soubiran, P., Roggenbach, A. & Mathis, M. W. Neuro-musculoskeletal modeling reveals muscle-level neural dynamics of adaptive learning in sensorimotor cortex. Preprint at bioRxiv https://doi.org/10.1101/2024.09.11.612513 (2024)

  • Ray Li, C.-S., Padoa-Schioppa, C. & Bizzi, E. Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron 30, 593–607 (2001).

    Article 

    Google Scholar 

  • Sun, X. et al. Cortical preparatory activity indexes learned motor memories. Nature 602, 274–279 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Meyer, T. & Rust, N. C. Single-exposure visual memory judgments are reflected in inferotemporal cortex. eLife 7, e32259 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meirhaeghe, N., Sohn, H. & Jazayeri, M. A precise and adaptive neural mechanism for predictive temporal processing in the frontal cortex. Neuron 109, 2995–3011 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Keller, G. B., Bonhoeffer, T. & Hübener, M. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74, 809–815 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Vendrell-Llopis, N., Fang, C., Qü, A. J., Costa, R. M. & Carmena, J. M. Diverse operant control of different motor cortex populations during learning. Curr. Biol. 32, 1616–1622 (2021).

    Article 

    Google Scholar 

  • Lake, B. M., Ullman, T. D., Tenenbaum, J. B. & Gershman, S. J. Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C. & Dosovitskiy, A. Do vision transformers see like convolutional neural networks? Preprint at arXiv https://doi.org/10.48550/arXiv.2108.08810 (2021).

  • Mountcastle, V. B. The Mindful Brain: Cortical Organization and the Group-selective Theory of Higher Brain Function (MIT Press, 1978).

  • Green, J. et al. A cell-type-specific error-correction signal in the posterior parietal cortex. Nature 620, 366–373 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wilmes, K. A., Petrovici, M. A., Sachidhanandam, S. & Senn, W. Uncertainty-modulated prediction errors in cortical microcircuits. eLife 13, RP95127 (2024).

    Article 

    Google Scholar 

  • Leinweber, M., Ward, D. R., Sobczak, J. M., Attinger, A. & Keller, G. B. A sensorimotor circuit in mouse cortex for visual flow predictions. Neuron 95, 1420–1432 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gershman, S. J. et al. Explaining dopamine through prediction errors and beyond. Nat. Neurosci. 27, 1645–1655 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eshel, N. et al. Arithmetic and local circuitry underlying dopamine prediction errors. Nature 525, 243–246 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tsai, M. C. et al. Hierarchy of prediction errors shapes the learning of context-dependent sensory representations. Preprint at bioRxiv https://doi.org/10.1101/2024.09.30.615819 (2024).

  • Palidis, D. J., McGregor, H. R., Vo, A., MacDonald, P. A. & Gribble, P. L. Null effects of levodopa on reward- and error-based motor adaptation, savings, and anterograde interference. J. Neurophysiol. 126, 47–67 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Perich, M. G., Gallego, J. A. & Miller, L. E. A neural population mechanism for rapid learning. Neuron 100, 964–976 (2017).

    Article 

    Google Scholar 

  • Pandarinath, C. et al. Inferring single-trial neural population dynamics using sequential auto-encoders. Nat. Methods 15, 805–815 (2017).

    Article 

    Google Scholar 

  • Hurwitz, C. L., Kudryashova, N. N., Onken, A. & Hennig, M. H. Building population models for large-scale neural recordings: Opportunities and pitfalls. Curr. Opin. Neurobiol. 70, 64–73 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models. Network 15, 243–262 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Jonathan, W. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article 

    Google Scholar 

  • Balzani, E., Lakshminarasimhan, K. J., Angelaki, D. E. & Savin, C. Efficient estimation of neural tuning during naturalistic behavior. Proceedings of the Advances in Neural Information Processing Systems Vol. 33, 12604–12614 (2020).

  • Jazayeri, M. & Afraz, A. Navigating the neural space in search of the neural code. Neuron 93, 1003–1014 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Churchland, M. et al. Neural population dynamics during reaching. Nature 487, 51–56 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sani, O. G., Pesaran, B. & Shanechi, M. Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks. Nat. Neurosci. 27, 2033–2045 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sani, O. G., Abbaspourazad, H., Wong, Y. T., Pesaran, B. & Shanechi, M. M. Modeling behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat. Neurosci. 24, 140–149 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mathis, M. W. & Mathis, A. Joint modelling of brain and behaviour dynamics with artificial intelligence. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-025-00996-1 (2025).

  • Keshtkaran, M. R. et al. A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nat. Methods 19, 1572–1577 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Azabou, M. et al. A unified, scalable framework for neural population decoding. Proceedings of the 37th Conference on Neural Information Processing Systems (2023).

  • Ye, S., Lauer, J., Zhou, M., Mathis, A. & Mathis, M. W. Amadeusgpt: a natural language interface for interactive animal behavioral analysis. Proceedings of the 37th International Conference on Neural Information Processing Systems (2023).

  • Castro, P. S. et al. Discovering symbolic cognitive models from human and animal behavior. Preprint at bioRxiv https://doi.org/10.1101/2025.02.05.636732 (2025).

  • Zhang, Y. et al. Towards a ‘universal translator’ for neural dynamics at single-cell, single-spike resolution. Preprint at arXiv https://doi.org/10.48550/arXiv.2407.14668 (2024).

  • Benchetrit, Y., Banville, H. J. & King, J.-R. Brain decoding: toward real-time reconstruction of visual perception. Preprint at arXiv https://doi.org/10.48550/arXiv.2310.19812 (2023).

  • Wang, E. Y. et al. Foundation model of neural activity predicts response to new stimulus types and anatomy. Preprint at bioRxiv https://doi.org/10.1101/2023.03.21.533548 (2024).

  • McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989).

    Article 

    Google Scholar 

  • Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Wortman Vaughan J. (eds). Continual learning via local module composition. In Proceedings of the Advances in Neural Information Processing Systems Vol. 34, 30298–30312 (Curran Associates, 2021).

  • Wallach, H. et al. (eds). Random path selection for continual learning. Proceedings of the Advances in Neural Information Processing Systems Vol. 32 (Curran Associates, 2019).

  • Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2016).

    Article 

    Google Scholar 

  • Ovsianas, A., Ramapuram, J., Busbridge, D., Dhekane, E. G. & Webb, R. Elastic weight consolidation improves the robustness of self-supervised learning methods under transfer. Preprint at arXiv https://doi.org/10.48550/arXiv.2210.16365 (2022).

  • Wang, L. et al. Memory replay with data compression for continual learning. Preprint at arXiv https://doi.org/10.48550/arXiv.2202.06592 (2022).

  • Ye, S. et al. SuperAnimal pretrained pose estimation models for behavioral analysis. Nat. Commun. 15, 5165 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang, L. et al. Incorporating neuro-inspired adaptability for continual learning in artificial intelligence. Preprint at arXiv https://doi.org/10.48550/arXiv.2308.14991 (2023).

  • Wang, L., Zhang, X., Su, H. & Zhu, J. A comprehensive survey of continual learning: theory, method and application. IEEE Trans. Pattern Anal. Mach. Intell. 46, 5362–5383 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Nguyen, C. V., Li, Y., Bui, T. D. & Turner, R. E. Variational continual learning. Proceedings of the International Conference on Learning Representations (2018).

  • Zenke, F., Poole, B. & Ganguli, S. Continual learning through synaptic intelligence. Proc. Mach. Learn. Res. 70, 3987–3995 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Roscow, E., Chua, R., Costa, R. P., Jones, M. W. & Lepora, N. F. Learning offline: memory replay in biological and artificial reinforcement learning. Trends Neurosci. 44, 808–821 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lin, L. Self-improving reactive agents based on reinforcement learning, planning and teaching. Mach. Learn. 8, 293–321 (1992).

    Article 

    Google Scholar 

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Packer, C. et al. MemGPT: towards LLMs as operating systems. Preprint at arXiv https://doi.org/10.48550/arXiv.2310.08560 (2023).

  • Wang, G. et al. Voyager: an open-ended embodied agent with large language models. Preprint at arXiv https://doi.org/10.48550/arXiv.2305.16291 (2023).

  • Keller, G. B. & Sterzer, P. Predictive processing: a circuit approach to psychosis. Ann. Rev. Neurosci. 47, 85–101 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.07258 (2021).

  • Gemini Team Google et al. Gemini: a family of highly capable multimodal models. Preprint at arXiv https://doi.org/10.48550/arXiv.2312.11805 (2024).

  • DeepSeek-AI et al. DeepSeek-v3 technical report. Preprint at arXiv https://doi.org/10.48550/arXiv.2412.19437 (2025).

  • Alayrac, J.-B. et al. Flamingo: a visual language model for few-shot learning. Adv. Neural Inform. Process. Syst. 35, 23716–23736 (2022).

    Google Scholar 

  • Li, F. et al. LLaVA-NeXT-Interleave: tackling multi-image, video, and 3D in large multimodal models. Preprint at arXiv https://doi.org/10.48550/arXiv.2407.07895 (2024).

  • Wang, L., Chen, X., Zhao, J. & Kaiming, H. Scaling proprioceptive-visual learning with heterogeneous pre-trained transformers. Preprint at arXiv https://doi.org/10.48550/arXiv.2409.20537 (2024).

  • Bordes, F. et al. An introduction to vision-language modeling. Preprint at arXiv https://doi.org/10.48550/arXiv.2405.17247 (2024).

  • Graybiel, A. M. & Grafton, S. T. The striatum: where skills and habits meet. Cold Spring Harb. Perspect. Biol. 7, a021691 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gummadi, M., Kent, C., Schmeckpeper, K. & Eaton, E. A metacognitive approach to out-of-distribution detection for segmentation. Preprint at arXiv https://doi.org/10.48550/arXiv.2311.07578 (2023).

  • Mirzaei, H. & Mathis, M. W. Adversarially robust out-of-distribution detection using Lyapunov-stabilized embeddings. Proceedings of the 13th International Conference on Learning Representations (ICLR) (2025).

  • Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K. & Müller, K.-R. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning Vol. 11700 (Springer Nature, 2019).

  • Ribeiro, M. T., Singh, S. & Guestrin, C. “Why should I trust you?”: explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 1135–1144 (2016).

  • Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Proceedings of the 31st International Conference on Neural Information Processing Systems Vol. 30, 4768–4777 (Curran Associates, 2017).

  • Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. Proceedings of the 34th International Conference on Machine Learning Vol. 70, 3319–3328 (2017).

  • Schneider, S., Laiz, R. G., Filippova, A., Frey, M. & Mackenzie, W. M. Time-series attribution maps with regularized contrastive learning. Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AISTATS) (2025).

  • Lotter, W., Kreiman, G. & Cox, D. Deep predictive coding networks for video prediction and unsupervised learning. Preprint at arXiv https://doi.org/10.48550/arXiv.1605.08104 (2017).

  • Assran, M. et al. Self-supervised learning from images with a joint-embedding predictive architecture. Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 15619–15629 (2023).

  • Hausmann, S. B., Vargas, A. M., Mathis, A. & Mathis, M. W. Measuring and modeling the motor system with machine learning. Curr. Opin. Neurobiol. 70, 11–23 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jordan, R. & Keller, G. B. The locus coeruleus broadcasts prediction errors across the cortex to promote sensorimotor plasticity. eLife 12, RP85111 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lim, L., Mi, D., Llorca, A. & Marín, O. Development and functional diversification of cortical interneurons. Neuron 100, 294–313 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, H., Xiong, W.-C. & Mei, L. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137, 1017–1033 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gou, J., Yu, B., Maybank, S. J. & Tao, D. Knowledge distillation: a survey. Int. J. Comput. Vis. 129, 1789–1819 (2020).

    Article 

    Google Scholar 

  • Dasen, J. S. & Jessell, T. M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 88, 169–200 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shuvaev, S. A., Lachi, D., Koulakov, A. A. & Zador, A. M. Encoding innate ability through a genomic bottleneck. Proc. Natl Acad. Sci. USA 121, e2409160121 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Muller, L. E., Churchland, P. S. & Sejnowski, T. J. Transformers and cortical waves: encoders for pulling in context across time. Trends Neurosci. 47, 788–802 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Maass, W. Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671 (1996).

    Article 

    Google Scholar 

  • Roy, K., Jaiswal, A. R. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eliasmith, C. et al. A large-scale model of the functioning brain. Science 338, 1202–1205 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Blouw, P., Solodkin, E., Thagard, P. & Eliasmith, C. Concepts as semantic pointers: a framework and computational model. Cogn. Sci. 40, 1128–1162 (2016).

    Article 
    PubMed 

    Google Scholar 

  • He, X.-Y. et al. An efficient knowledge transfer strategy for spiking neural networks from static to event domain. Proceedings of the AAAI Conference on Artificial Intelligence Vol. 38, 512–520 (AAAI Press, 2024).

  • Wunderlich, T. C. & Pehle, C. Event-based backpropagation can compute exact gradients for spiking neural networks. Sci. Rep. 11, 12829 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 



  • Source link