An automated framework for exploring and learning potential-energy surfaces

Machine Learning


  • Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–12840 (2017).

    ADS 

    Google Scholar 

  • Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).

    Google Scholar 

  • Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature 585, 217–220 (2020).

    ADS 
    PubMed 

    Google Scholar 

  • Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).

    ADS 
    PubMed 

    Google Scholar 

  • Zong, H. et al. Free electron to electride transition in dense liquid potassium. Nat. Phys. 17, 955–960 (2021).

    ADS 

    Google Scholar 

  • Westermayr, J. et al. Deep learning study of tyrosine reveals that roaming can lead to photodamage. Nat. Chem. 14, 914–919 (2022).

    PubMed 

    Google Scholar 

  • Zhang, S. et al. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat. Chem. 16, 727–734 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. Ab initio characterization of protein molecular dynamics with AI2BMD. Nature 635, 1019–1027 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).

    ADS 
    MathSciNet 

    Google Scholar 

  • Shapeev, A. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).

    MathSciNet 

    Google Scholar 

  • Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 99, 014104 (2019).

    ADS 

    Google Scholar 

  • Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Unke, O. T. & Meuwly, M. Physnet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).

    PubMed 

    Google Scholar 

  • Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: Higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35, 11423–11436 (2022).

    Google Scholar 

  • Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).

    PubMed 

    Google Scholar 

  • Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).

    Google Scholar 

  • Sosso, G. C., Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural network interatomic potential for the phase change material GeTe. Phys. Rev. B 85, 174103 (2012).

    ADS 

    Google Scholar 

  • Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).

    Google Scholar 

  • Erhard, L. C., Rohrer, J., Albe, K. & Deringer, V. L. A machine-learned interatomic potential for silica and its relation to empirical models. npj Comput. Mater. 8, 90 (2022).

    ADS 

    Google Scholar 

  • Zhou, Y., Zhang, W., Ma, E. & Deringer, V. L. Device-scale atomistic modelling of phase-change memory materials. Nat. Electron. 6, 746–754 (2023).

    Google Scholar 

  • Zhang, D. et al. DPA-2: A large atomic model as a multi-task learner. npj Comput. Mater. 10, 293 (2024).

    Google Scholar 

  • Batatia, I. et al. A foundation model for atomistic materials chemistry Preprint at https://arxiv.org/abs/2401.00096 (2024).

  • Kaur, H. et al. Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies. Faraday Discuss. 256, 120–138 (2025).

    PubMed 

    Google Scholar 

  • Ben Mahmoud, C., Gardner, J. L. A. & Deringer, V. L. Data as the next challenge in atomistic machine learning. Nat. Comput. Sci. 4, 384–387 (2024).

    PubMed 

    Google Scholar 

  • Kulichenko, M. et al. Data generation for machine learning interatomic potentials and beyond. Chem. Rev. 124, 13681–13714 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more: sampling chemical space with active learning. J. Chem. Phys. 148, 241733 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • van der Oord, C., Sachs, M., Kovács, D. P., Ortner, C. & Csányi, G. Hyperactive learning for data-driven interatomic potentials. npj Comput. Mater. 9, 168 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kulichenko, M. et al. Uncertainty-driven dynamics for active learning of interatomic potentials. Nat. Comput. Sci. 3, 230–239 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vandermause, J. et al. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj Comput. Mater. 6, 20 (2020).

    ADS 

    Google Scholar 

  • Vandenhaute, S., Cools-Ceuppens, M., DeKeyser, S., Verstraelen, T. & Van Speybroeck, V. Machine learning potentials for metal-organic frameworks using an incremental learning approach. npj Comput. Mater. 9, 19 (2023).

    ADS 

    Google Scholar 

  • Xie, Y. et al. Uncertainty-aware molecular dynamics from Bayesian active learning for phase transformations and thermal transport in SiC. npj Comput. Mater. 9, 36 (2023).

    ADS 

    Google Scholar 

  • Young, T. A., Johnston-Wood, T., Deringer, V. L. & Duarte, F. A transferable active-learning strategy for reactive molecular force fields. Chem. Sci. 12, 10944–10955 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan, X., Heindel, J. P., Ko, T., Yang, C. & Head-Gordon, T. Using machine learning to go beyond potential energy surface benchmarking for chemical reactivity. Nat. Comput. Sci. 3, 965–974 (2023).

    PubMed 

    Google Scholar 

  • Schaaf, L. L., Fako, E., De, S., Schäfer, A. & Csányi, G. Accurate energy barriers for catalytic reaction pathways: an automatic training protocol for machine learning force fields. npj Comput. Mater. 9, 180 (2023).

    ADS 

    Google Scholar 

  • Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    ADS 

    Google Scholar 

  • Horton, M. K. et al. Accelerated data-driven materials science with the Materials Project. Nat. Mater. https://doi.org/10.1038/s41563-025-02272-0 (2025).

  • Deringer, V. L., Pickard, C. J. & Csányi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Tong, Q., Xue, L., Lv, J., Wang, Y. & Ma, Y. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface. Faraday Discuss. 211, 31–43 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. Faraday Discuss. 211, 45–59 (2018).

    ADS 
    PubMed 

    Google Scholar 

  • Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).

    ADS 

    Google Scholar 

  • Bernstein, N., Csányi, G. & Deringer, V. L. De novo exploration and self-guided learning of potential-energy surfaces. npj Comput. Mater. 5, 99 (2019).

    ADS 

    Google Scholar 

  • Pickard, C. J. Ephemeral data derived potentials for random structure search. Phys. Rev. B 106, 014102 (2022).

    ADS 

    Google Scholar 

  • Pickard, C. J. Beyond theory-driven discovery: introducing hot random search and datum-derived structures. Faraday Discuss. 256, 61–84 (2025).

    PubMed 

    Google Scholar 

  • Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).

    ADS 
    PubMed 

    Google Scholar 

  • Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys.: Condens. Matter 23, 053201 (2011).

    ADS 
    PubMed 

    Google Scholar 

  • Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. et al. MatterSim: A deep learning atomistic model across elements, temperatures and pressures Preprint at https://arxiv.org/abs/2405.04967 (2024).

  • George, J. Automation in DFT-based computational materials science. Trends Chem. 3, 697–699 (2021).

    Google Scholar 

  • Curtarolo, S. et al. Aflow: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).

    Google Scholar 

  • Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).

    ADS 

    Google Scholar 

  • Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016).

    Google Scholar 

  • Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).

    ADS 

    Google Scholar 

  • Choudhary, K. et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).

    ADS 

    Google Scholar 

  • Pyzer-Knapp, E. O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J. & Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 45, 195–216 (2015).

    ADS 

    Google Scholar 

  • Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).

    ADS 

    Google Scholar 

  • Hautier, G. Finding the needle in the haystack: Materials discovery and design through computational ab initio high-throughput screening. Comput. Mater. Sci. 163, 108–116 (2019).

    Google Scholar 

  • Janssen, J. et al. pyiron: An integrated development environment for computational materials science. Comput. Mater. Sci. 163, 24–36 (2019).

    Google Scholar 

  • Zhang, Y. et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).

    MathSciNet 

    Google Scholar 

  • Gelžinytė, E. et al. wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows. J. Chem. Phys. 159, 124801 (2023).

    ADS 
    PubMed 

    Google Scholar 

  • Guo, Y.-X., Zhuang, Y.-B., Shi, J. & Cheng, J. ChecMatE: a workflow package to automatically generate machine learning potentials and phase diagrams for semiconductor alloys. J. Chem. Phys. 159, 094801 (2023).

    ADS 
    PubMed 

    Google Scholar 

  • Menon, S. et al. From electrons to phase diagrams with classical and machine learning potentials: automated workflows for materials science with pyiron. npj Comput. Mater. 10, 261 (2024).

    Google Scholar 

  • Poul, M., Huber, L. & Neugebauer, J. Automated generation of structure datasets for machine learning potentials and alloys. npj Comput. Mater. 11, 174 (2025).

  • Li, Z. et al. APEX: An automated cloud-native material property explorer. npj Comput. Mater. 11, 88 (2025).

    Google Scholar 

  • Ganose, A. M. et al. Atomate2: Modular workflows for materials science. Digital Discovery 4, 1944–1973 (2025).

  • Kim, D. Y., Stefanoski, S., Kurakevych, O. O. & Strobel, T. A. Synthesis of an open-framework allotrope of silicon. Nat. Mater. 14, 169–173 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Armstrong, A. R., Armstrong, G., Canales, J., García, R. & Bruce, P. G. Lithium ion intercalation into TiO2 B nanowires. Adv. Mater. 17, 862–865 (2005).

    Google Scholar 

  • Liang, S. et al. Bronze phase TiO2 as anode materials in lithium and sodium ion batteries. Adv. Funct. Mater. 32, 2201675 (2022).

    Google Scholar 

  • Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    PubMed 

    Google Scholar 

  • Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Demuth, T., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys.: Condens. Matter 11, 3833–3874 (1999).

    ADS 

    Google Scholar 

  • Erhard, L. C., Rohrer, J., Albe, K. & Deringer, V. L. Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine learning. Nat. Commun. 15, 1927 (2024).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Villard, J., Bircher, M. P. & Rothlisberger, U. Structure and dynamics of liquid water from ab initio simulations: adding Minnesota density functionals to Jacob’s ladder. Chem. Sci. 15, 4434–4451 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    ADS 
    PubMed 

    Google Scholar 

  • Pestana, L. R., Mardirossian, N., Head-Gordon, M. & Head-Gordon, T. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals. Chem. Sci. 8, 3554–3565 (2017).

    Google Scholar 

  • Marsalek, O. & Markland, T. E. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017).

    PubMed 

    Google Scholar 

  • Markland, T. E. & Ceriotti, M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2, 0109 (2018).

    Google Scholar 

  • Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022).

    Google Scholar 

  • Gardner, J. L. A.graph-pes: train and use graph-based ML models of potential energy surfaces. https://github.com/jla-gardner/graph-pes (2024).

  • Poole, P. H., Sciortino, F., Grande, T., Stanley, H. E. & Angell, C. A. Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett. 73, 1632 (1994).

    ADS 
    PubMed 

    Google Scholar 

  • Kumar, R., Schmidt, J. & Skinner, J. Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 126, 204107 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Todorova, T., Seitsonen, A. P., Hutter, J., Kuo, I.-F. W. & Mundy, C. J. Molecular dynamics simulation of liquid water: Hybrid density functionals. J. Phys. Chem. B 110, 3685–3691 (2006).

    PubMed 

    Google Scholar 

  • Salzbrenner, P. T. et al. Developments and further applications of ephemeral data derived potentials. J. Chem. Phys. 159, 144801 (2023).

    ADS 
    PubMed 

    Google Scholar 

  • Monserrat, B., Brandenburg, J. G., Engel, E. A. & Cheng, B. Liquid water contains the building blocks of diverse ice phases. Nat. Commun. 11, 5757 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gardner, J. L. A., Baker, K. T. & Deringer, V. L. Synthetic pre-training for neural-network interatomic potentials. Mach. Learn.: Sci. Technol. 5, 015003 (2024).

    ADS 

    Google Scholar 

  • Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Selmo, S. et al. Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires. Appl. Phys. Lett. 109, 213103 (2016).

    ADS 

    Google Scholar 

  • Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    ADS 

    Google Scholar 

  • Raty, J. Y. et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).

    ADS 
    PubMed 

    Google Scholar 

  • Deringer, V. L., Dronskowski, R. & Wuttig, M. Microscopic complexity in phase-change materials and its role for applications. Adv. Funct. Mater. 25, 6343–6359 (2015).

    Google Scholar 

  • Schröder, T. et al. Disorder and transport properties of In3SbTe2 – an X-ray, neutron and electron diffraction study. Z. Anorg. Allg. Chem. 639, 2536–2541 (2013).

    Google Scholar 

  • Los, J. H., Kühne, T. D., Gabardi, S. & Bernasconi, M. First-principles study of the amorphous In3SbTe2 phase change compound. Phys. Rev. B 88, 174203 (2013).

    ADS 

    Google Scholar 

  • Meziere, J. A. et al. Accelerating training of MLIPs through small-cell training. J. Mater. Res. 38, 5095–5105 (2023).

    ADS 

    Google Scholar 

  • Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).

    ADS 

    Google Scholar 

  • Xu, Y. et al. Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations. Adv. Mater. 34, 2109139 (2022).

    Google Scholar 

  • Schusteritsch, G. & Pickard, C. J. Predicting interface structures: from SrTiO3 to graphene. Phys. Rev. B 90, 035424 (2014).

    ADS 

    Google Scholar 

  • Deringer, V. L., Caro, M. A. & Csányi, G. A general-purpose machine-learning force field for bulk and nanostructured phosphorus. Nat. Commun. 11, 5461 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrow, J. D., Gardner, J. L. A. & Deringer, V. L. How to validate machine-learned interatomic potentials. J. Chem. Phys. 158, 121501 (2023).

    ADS 
    PubMed 

    Google Scholar 

  • Thomas du Toit, D. F., Zhou, Y. & Deringer, V. L. Hyperparameter optimization for atomic cluster expansion potentials. J. Chem. Theory Comput. 20, 10103–10113 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Witt, W. C. et al. ACEpotentials.jl: A Julia implementation of the atomic cluster expansion. J. Chem. Phys. 159, 164101 (2023).

    ADS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. autoatml/papers-autoplex-rss: v1.0.0. Zenodo, https://doi.org/10.5281/zenodo.15720026 (2025).

  • Rosen, A. S. et al. Jobflow: Computational Workflows Made Simple. J. Open Source Softw. 9, 5995 (2024).

    ADS 

    Google Scholar 

  • Jain, A. et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. 27, 5037 (2015).

    Google Scholar 

  • Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Google Scholar 

  • Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys.: Condens. Matter 29, 273002 (2017).

    PubMed 

    Google Scholar 

  • Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar 

  • Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS 

    Google Scholar 

  • Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 

    Google Scholar 

  • Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    ADS 
    PubMed 

    Google Scholar 

  • Zhang, Y. & Yang, W. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890–890 (1998).

    ADS 

    Google Scholar 

  • Lyle, M. J., Pickard, C. J. & Needs, R. J. Prediction of 10-fold coordinated TiO2 and SiO2 structures at multimegabar pressures. Proc. Natl Acad. Sci. Usa. 112, 6898–6901 (2015).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    ADS 

    Google Scholar 

  • Liu, Y. et al. Machine-learning-based interatomic potential models for “An automated framework for exploring and learning potential-energy surfaces”. Zenodo, https://doi.org/10.5281/zenodo.15258384 (2025).

  • Ertural, C. et al. autoatml/autoplex: v0.0.7. Zenodo, https://doi.org/10.5281/zenodo.14169361 (2024).

  • Beckett, G. et al. ARCHER2 Service Description, Zenodo, https://doi.org/10.5281/zenodo.14507040 (2024).

  • Soper, A. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 258, 121–137 (2000).

    Google Scholar 

  • Skinner, L. B., Benmore, C. J., Neuefeind, J. C. & Parise, J. B. The structure of water around the compressibility minimum. J. Chem. Phys. 141, 214507 (2014).

    ADS 
    PubMed 

    Google Scholar 

  • Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).

    ADS 
    PubMed 

    Google Scholar 

  • Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).

    ADS 
    PubMed 

    Google Scholar 



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *