Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. 56, 12828–12840 (2017).
Google Scholar
Deringer, V. L., Caro, M. A. & Csányi, G. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 31, 1902765 (2019).
Noé, F., Tkatchenko, A., Müller, K.-R. & Clementi, C. Machine learning for molecular simulation. Annu. Rev. Phys. Chem. 71, 361–390 (2020).
Google Scholar
Unke, O. T. et al. Machine learning force fields. Chem. Rev. 121, 10142–10186 (2021).
Google Scholar
Friederich, P., Häse, F., Proppe, J. & Aspuru-Guzik, A. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021).
Google Scholar
Cheng, B., Mazzola, G., Pickard, C. J. & Ceriotti, M. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature 585, 217–220 (2020).
Google Scholar
Deringer, V. L. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).
Google Scholar
Zong, H. et al. Free electron to electride transition in dense liquid potassium. Nat. Phys. 17, 955–960 (2021).
Google Scholar
Westermayr, J. et al. Deep learning study of tyrosine reveals that roaming can lead to photodamage. Nat. Chem. 14, 914–919 (2022).
Google Scholar
Zhang, S. et al. Exploring the frontiers of condensed-phase chemistry with a general reactive machine learning potential. Nat. Chem. 16, 727–734 (2024).
Google Scholar
Wang, T. et al. Ab initio characterization of protein molecular dynamics with AI2BMD. Nature 635, 1019–1027 (2024).
Google Scholar
Thompson, A. P., Swiler, L. P., Trott, C. R., Foiles, S. M. & Tucker, G. J. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials. J. Comput. Phys. 285, 316–330 (2015).
Google Scholar
Shapeev, A. Moment tensor potentials: A class of systematically improvable interatomic potentials. Multiscale Model. Simul. 14, 1153–1173 (2016).
Google Scholar
Drautz, R. Atomic cluster expansion for accurate and transferable interatomic potentials. Phys. Rev. B 99, 014104 (2019).
Google Scholar
Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
Google Scholar
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Google Scholar
Zhang, L., Han, J., Wang, H., Car, R. & E, W. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics. Phys. Rev. Lett. 120, 143001 (2018).
Google Scholar
Unke, O. T. & Meuwly, M. Physnet: A neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).
Google Scholar
Batzner, S. et al. E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials. Nat. Commun. 13, 2453 (2022).
Google Scholar
Batatia, I., Kovacs, D. P., Simm, G., Ortner, C. & Csányi, G. MACE: Higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural Inf. Process. Syst. 35, 11423–11436 (2022).
Chen, C. & Ong, S. P. A universal graph deep learning interatomic potential for the periodic table. Nat. Comput. Sci. 2, 718–728 (2022).
Google Scholar
Deng, B. et al. CHGNet as a pretrained universal neural network potential for charge-informed atomistic modelling. Nat. Mach. Intell. 5, 1031–1041 (2023).
Sosso, G. C., Miceli, G., Caravati, S., Behler, J. & Bernasconi, M. Neural network interatomic potential for the phase change material GeTe. Phys. Rev. B 85, 174103 (2012).
Google Scholar
Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).
Erhard, L. C., Rohrer, J., Albe, K. & Deringer, V. L. A machine-learned interatomic potential for silica and its relation to empirical models. npj Comput. Mater. 8, 90 (2022).
Google Scholar
Zhou, Y., Zhang, W., Ma, E. & Deringer, V. L. Device-scale atomistic modelling of phase-change memory materials. Nat. Electron. 6, 746–754 (2023).
Zhang, D. et al. DPA-2: A large atomic model as a multi-task learner. npj Comput. Mater. 10, 293 (2024).
Batatia, I. et al. A foundation model for atomistic materials chemistry Preprint at https://arxiv.org/abs/2401.00096 (2024).
Kaur, H. et al. Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies. Faraday Discuss. 256, 120–138 (2025).
Google Scholar
Ben Mahmoud, C., Gardner, J. L. A. & Deringer, V. L. Data as the next challenge in atomistic machine learning. Nat. Comput. Sci. 4, 384–387 (2024).
Google Scholar
Kulichenko, M. et al. Data generation for machine learning interatomic potentials and beyond. Chem. Rev. 124, 13681–13714 (2024).
Google Scholar
Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more: sampling chemical space with active learning. J. Chem. Phys. 148, 241733 (2018).
Google Scholar
van der Oord, C., Sachs, M., Kovács, D. P., Ortner, C. & Csányi, G. Hyperactive learning for data-driven interatomic potentials. npj Comput. Mater. 9, 168 (2023).
Google Scholar
Kulichenko, M. et al. Uncertainty-driven dynamics for active learning of interatomic potentials. Nat. Comput. Sci. 3, 230–239 (2023).
Google Scholar
Vandermause, J. et al. On-the-fly active learning of interpretable Bayesian force fields for atomistic rare events. npj Comput. Mater. 6, 20 (2020).
Google Scholar
Vandenhaute, S., Cools-Ceuppens, M., DeKeyser, S., Verstraelen, T. & Van Speybroeck, V. Machine learning potentials for metal-organic frameworks using an incremental learning approach. npj Comput. Mater. 9, 19 (2023).
Google Scholar
Xie, Y. et al. Uncertainty-aware molecular dynamics from Bayesian active learning for phase transformations and thermal transport in SiC. npj Comput. Mater. 9, 36 (2023).
Google Scholar
Young, T. A., Johnston-Wood, T., Deringer, V. L. & Duarte, F. A transferable active-learning strategy for reactive molecular force fields. Chem. Sci. 12, 10944–10955 (2021).
Google Scholar
Guan, X., Heindel, J. P., Ko, T., Yang, C. & Head-Gordon, T. Using machine learning to go beyond potential energy surface benchmarking for chemical reactivity. Nat. Comput. Sci. 3, 965–974 (2023).
Google Scholar
Schaaf, L. L., Fako, E., De, S., Schäfer, A. & Csányi, G. Accurate energy barriers for catalytic reaction pathways: an automatic training protocol for machine learning force fields. npj Comput. Mater. 9, 180 (2023).
Google Scholar
Jain, A. et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).
Google Scholar
Horton, M. K. et al. Accelerated data-driven materials science with the Materials Project. Nat. Mater. https://doi.org/10.1038/s41563-025-02272-0 (2025).
Deringer, V. L., Pickard, C. J. & Csányi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).
Google Scholar
Tong, Q., Xue, L., Lv, J., Wang, Y. & Ma, Y. Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface. Faraday Discuss. 211, 31–43 (2018).
Google Scholar
Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. Faraday Discuss. 211, 45–59 (2018).
Google Scholar
Podryabinkin, E. V., Tikhonov, E. V., Shapeev, A. V. & Oganov, A. R. Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning. Phys. Rev. B 99, 064114 (2019).
Google Scholar
Bernstein, N., Csányi, G. & Deringer, V. L. De novo exploration and self-guided learning of potential-energy surfaces. npj Comput. Mater. 5, 99 (2019).
Google Scholar
Pickard, C. J. Ephemeral data derived potentials for random structure search. Phys. Rev. B 106, 014102 (2022).
Google Scholar
Pickard, C. J. Beyond theory-driven discovery: introducing hot random search and datum-derived structures. Faraday Discuss. 256, 61–84 (2025).
Google Scholar
Pickard, C. J. & Needs, R. J. High-pressure phases of silane. Phys. Rev. Lett. 97, 045504 (2006).
Google Scholar
Pickard, C. J. & Needs, R. J. Ab initio random structure searching. J. Phys.: Condens. Matter 23, 053201 (2011).
Google Scholar
Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).
Google Scholar
Yang, H. et al. MatterSim: A deep learning atomistic model across elements, temperatures and pressures Preprint at https://arxiv.org/abs/2405.04967 (2024).
George, J. Automation in DFT-based computational materials science. Trends Chem. 3, 697–699 (2021).
Curtarolo, S. et al. Aflow: an automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218–226 (2012).
Kirklin, S. et al. The open quantum materials database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1, 15010 (2015).
Google Scholar
Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016).
Mathew, K. et al. Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows. Comput. Mater. Sci. 139, 140–152 (2017).
Google Scholar
Choudhary, K. et al. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. npj Comput. Mater. 6, 173 (2020).
Google Scholar
Pyzer-Knapp, E. O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J. & Aspuru-Guzik, A. What is high-throughput virtual screening? A perspective from organic materials discovery. Annu. Rev. Mater. Res. 45, 195–216 (2015).
Google Scholar
Gorai, P., Stevanović, V. & Toberer, E. S. Computationally guided discovery of thermoelectric materials. Nat. Rev. Mater. 2, 17053 (2017).
Google Scholar
Hautier, G. Finding the needle in the haystack: Materials discovery and design through computational ab initio high-throughput screening. Comput. Mater. Sci. 163, 108–116 (2019).
Janssen, J. et al. pyiron: An integrated development environment for computational materials science. Comput. Mater. Sci. 163, 24–36 (2019).
Zhang, Y. et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models. Comput. Phys. Commun. 253, 107206 (2020).
Google Scholar
Gelžinytė, E. et al. wfl Python toolkit for creating machine learning interatomic potentials and related atomistic simulation workflows. J. Chem. Phys. 159, 124801 (2023).
Google Scholar
Guo, Y.-X., Zhuang, Y.-B., Shi, J. & Cheng, J. ChecMatE: a workflow package to automatically generate machine learning potentials and phase diagrams for semiconductor alloys. J. Chem. Phys. 159, 094801 (2023).
Google Scholar
Menon, S. et al. From electrons to phase diagrams with classical and machine learning potentials: automated workflows for materials science with pyiron. npj Comput. Mater. 10, 261 (2024).
Poul, M., Huber, L. & Neugebauer, J. Automated generation of structure datasets for machine learning potentials and alloys. npj Comput. Mater. 11, 174 (2025).
Li, Z. et al. APEX: An automated cloud-native material property explorer. npj Comput. Mater. 11, 88 (2025).
Ganose, A. M. et al. Atomate2: Modular workflows for materials science. Digital Discovery 4, 1944–1973 (2025).
Kim, D. Y., Stefanoski, S., Kurakevych, O. O. & Strobel, T. A. Synthesis of an open-framework allotrope of silicon. Nat. Mater. 14, 169–173 (2015).
Google Scholar
Armstrong, A. R., Armstrong, G., Canales, J., García, R. & Bruce, P. G. Lithium ion intercalation into TiO2 B nanowires. Adv. Mater. 17, 862–865 (2005).
Liang, S. et al. Bronze phase TiO2 as anode materials in lithium and sodium ion batteries. Adv. Funct. Mater. 32, 2201675 (2022).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
Google Scholar
Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).
Google Scholar
Demuth, T., Jeanvoine, Y., Hafner, J. & Ángyán, J. G. Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys.: Condens. Matter 11, 3833–3874 (1999).
Google Scholar
Erhard, L. C., Rohrer, J., Albe, K. & Deringer, V. L. Modelling atomic and nanoscale structure in the silicon-oxygen system through active machine learning. Nat. Commun. 15, 1927 (2024).
Google Scholar
Villard, J., Bircher, M. P. & Rothlisberger, U. Structure and dynamics of liquid water from ab initio simulations: adding Minnesota density functionals to Jacob’s ladder. Chem. Sci. 15, 4434–4451 (2024).
Google Scholar
Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).
Google Scholar
Pestana, L. R., Mardirossian, N., Head-Gordon, M. & Head-Gordon, T. Ab initio molecular dynamics simulations of liquid water using high quality meta-GGA functionals. Chem. Sci. 8, 3554–3565 (2017).
Marsalek, O. & Markland, T. E. Quantum dynamics and spectroscopy of ab initio liquid water: the interplay of nuclear and electronic quantum effects. J. Phys. Chem. Lett. 8, 1545–1551 (2017).
Google Scholar
Markland, T. E. & Ceriotti, M. Nuclear quantum effects enter the mainstream. Nat. Rev. Chem. 2, 0109 (2018).
Thompson, A. P. et al. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comp. Phys. Comm. 271, 108171 (2022).
Gardner, J. L. A.graph-pes: train and use graph-based ML models of potential energy surfaces. https://github.com/jla-gardner/graph-pes (2024).
Poole, P. H., Sciortino, F., Grande, T., Stanley, H. E. & Angell, C. A. Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett. 73, 1632 (1994).
Google Scholar
Kumar, R., Schmidt, J. & Skinner, J. Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 126, 204107 (2007).
Google Scholar
Todorova, T., Seitsonen, A. P., Hutter, J., Kuo, I.-F. W. & Mundy, C. J. Molecular dynamics simulation of liquid water: Hybrid density functionals. J. Phys. Chem. B 110, 3685–3691 (2006).
Google Scholar
Salzbrenner, P. T. et al. Developments and further applications of ephemeral data derived potentials. J. Chem. Phys. 159, 144801 (2023).
Google Scholar
Monserrat, B., Brandenburg, J. G., Engel, E. A. & Cheng, B. Liquid water contains the building blocks of diverse ice phases. Nat. Commun. 11, 5757 (2020).
Google Scholar
Gardner, J. L. A., Baker, K. T. & Deringer, V. L. Synthetic pre-training for neural-network interatomic potentials. Mach. Learn.: Sci. Technol. 5, 015003 (2024).
Google Scholar
Wuttig, M. & Yamada, N. Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007).
Google Scholar
Selmo, S. et al. Low power phase change memory switching of ultra-thin In3Sb1Te2 nanowires. Appl. Phys. Lett. 109, 213103 (2016).
Google Scholar
Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).
Google Scholar
Raty, J. Y. et al. Aging mechanisms in amorphous phase-change materials. Nat. Commun. 6, 7467 (2015).
Google Scholar
Deringer, V. L., Dronskowski, R. & Wuttig, M. Microscopic complexity in phase-change materials and its role for applications. Adv. Funct. Mater. 25, 6343–6359 (2015).
Schröder, T. et al. Disorder and transport properties of In3SbTe2 – an X-ray, neutron and electron diffraction study. Z. Anorg. Allg. Chem. 639, 2536–2541 (2013).
Los, J. H., Kühne, T. D., Gabardi, S. & Bernasconi, M. First-principles study of the amorphous In3SbTe2 phase change compound. Phys. Rev. B 88, 174203 (2013).
Google Scholar
Meziere, J. A. et al. Accelerating training of MLIPs through small-cell training. J. Mater. Res. 38, 5095–5105 (2023).
Google Scholar
Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
Google Scholar
Xu, Y. et al. Unraveling crystallization mechanisms and electronic structure of phase-change materials by large-scale ab initio simulations. Adv. Mater. 34, 2109139 (2022).
Schusteritsch, G. & Pickard, C. J. Predicting interface structures: from SrTiO3 to graphene. Phys. Rev. B 90, 035424 (2014).
Google Scholar
Deringer, V. L., Caro, M. A. & Csányi, G. A general-purpose machine-learning force field for bulk and nanostructured phosphorus. Nat. Commun. 11, 5461 (2020).
Google Scholar
Morrow, J. D., Gardner, J. L. A. & Deringer, V. L. How to validate machine-learned interatomic potentials. J. Chem. Phys. 158, 121501 (2023).
Google Scholar
Thomas du Toit, D. F., Zhou, Y. & Deringer, V. L. Hyperparameter optimization for atomic cluster expansion potentials. J. Chem. Theory Comput. 20, 10103–10113 (2024).
Google Scholar
Witt, W. C. et al. ACEpotentials.jl: A Julia implementation of the atomic cluster expansion. J. Chem. Phys. 159, 164101 (2023).
Google Scholar
Liu, Y. et al. autoatml/papers-autoplex-rss: v1.0.0. Zenodo, https://doi.org/10.5281/zenodo.15720026 (2025).
Rosen, A. S. et al. Jobflow: Computational Workflows Made Simple. J. Open Source Softw. 9, 5995 (2024).
Google Scholar
Jain, A. et al. FireWorks: a dynamic workflow system designed for high-throughput applications. Concurr. Comput. 27, 5037 (2015).
Ong, S. P. et al. Python Materials Genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).
Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys.: Condens. Matter 29, 273002 (2017).
Google Scholar
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
Google Scholar
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
Google Scholar
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
Google Scholar
Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).
Google Scholar
Zhang, Y. & Yang, W. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890–890 (1998).
Google Scholar
Lyle, M. J., Pickard, C. J. & Needs, R. J. Prediction of 10-fold coordinated TiO2 and SiO2 structures at multimegabar pressures. Proc. Natl Acad. Sci. Usa. 112, 6898–6901 (2015).
Google Scholar
Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).
Google Scholar
Liu, Y. et al. Machine-learning-based interatomic potential models for “An automated framework for exploring and learning potential-energy surfaces”. Zenodo, https://doi.org/10.5281/zenodo.15258384 (2025).
Ertural, C. et al. autoatml/autoplex: v0.0.7. Zenodo, https://doi.org/10.5281/zenodo.14169361 (2024).
Beckett, G. et al. ARCHER2 Service Description, Zenodo, https://doi.org/10.5281/zenodo.14507040 (2024).
Soper, A. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa. Chem. Phys. 258, 121–137 (2000).
Skinner, L. B., Benmore, C. J., Neuefeind, J. C. & Parise, J. B. The structure of water around the compressibility minimum. J. Chem. Phys. 141, 214507 (2014).
Google Scholar
Kühne, T. D., Krack, M., Mohamed, F. R. & Parrinello, M. Efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics. Phys. Rev. Lett. 98, 066401 (2007).
Google Scholar
Kühne, T. D. et al. CP2K: An electronic structure and molecular dynamics software package – Quickstep: efficient and accurate electronic structure calculations. J. Chem. Phys. 152, 194103 (2020).
Google Scholar
