Jehi, L. et al. Development and validation of nomograms to provide individualised predictions of seizure outcomes after epilepsy surgery: A retrospective analysis. Lancet Neurol. 14, 283–290. https://doi.org/10.1016/S1474-4422(14)70325-4 (2015).
Google Scholar
Cross, J. H., Reilly, C., Delicado, E. G., Smith, M. L. & Malmgren, K. Epilepsy surgery for children and adolescents: Evidence-based but underused. Lancet Child Adolesc. HealTH 6, 484–494. https://doi.org/10.1016/S2352-4642(22)00098-0 (2022).
Google Scholar
Lamberink, H. J. et al. Seizure outcome and use of antiepileptic drugs after epilepsy surgery according to histopathological diagnosis: A retrospective multicentre cohort study. Lancet Neurol. 19, 748–757. https://doi.org/10.1016/S1474-4422(20)30220-9 (2020).
Google Scholar
Grigsby, J., Kramer, R. E., Schneiders, J. L., Gates, J. R. & Brewster, S. W. Predicting outcome of anterior temporal lobectomy using simulated neural networks. Epilepsia 39, 61–66. https://doi.org/10.1111/j.1528-1157.1998.tb01275.x (1998).
Google Scholar
Jehi, L. Machine learning for precision epilepsy surgery. Epilepsy Curr. 23, 78–83. https://doi.org/10.1177/15357597221150055 (2023).
Google Scholar
Memarian, N., Kim, S., Dewar, S., Engel, J. J. & Staba, R. J. Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy. Comput. Biol. Med. 64, 67–78. https://doi.org/10.1016/j.compbiomed.2015.06.008 (2015).
Google Scholar
Alim-Marvasti, A., Vakharia, V. N. & Duncan, J. S. Multimodal prognostic features of seizure freedom in epilepsy surgery. J. Neurol. Neurosurg. Psychiatry 93, 499–508. https://doi.org/10.1136/jnnp-2021-327119 (2022).
Google Scholar
Najm, I. et al. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia 54, 772–782. https://doi.org/10.1111/epi.12152 (2013).
Google Scholar
Fitzgerald, Z. et al. Improving the prediction of epilepsy surgery outcomes using basic scalp EEG findings. Epilepsia 62, 2439–2450. https://doi.org/10.1111/epi.17024 (2021).
Google Scholar
Varatharajah, Y. et al. Quantitative analysis of visually reviewed normal scalp EEG predicts seizure freedom following anterior temporal lobectomy. Epilepsia 63, 1630–1642. https://doi.org/10.1111/epi.17257 (2022).
Google Scholar
Huang, J. S., Li, Y., Chen, B. Q., Lin, C. & Yao, B. An intelligent EEG classification methodology based on sparse representation enhanced deep learning networks. Front. Neurosci. 14, 1–8. https://doi.org/10.3389/fnins.2020.00808 (2020).
Google Scholar
Morales, S. & Bowers, M. E. Time-frequency analysis methods and their application in developmental EEG data. Dev. Cogn. Neurosci. 54, 101067. https://doi.org/10.1016/j.dcn.2022.101067 (2022).
Google Scholar
Stam, C. J. Nonlinear dynamical analysis of EEG and MEG: Review of an emerging field. Clin. Neurophysiol. 116, 2266–2301. https://doi.org/10.1016/j.clinph.2005.06.011 (2005).
Google Scholar
Müller, M. et al. Linear and nonlinear interrelations show fundamentally distinct network structure in preictal intracranial EEG of epilepsy patients. Hum. Brain Mapp. 41, 467–483. https://doi.org/10.1002/hbm.24816 (2020).
Google Scholar
Acharya, U. R., Fujita, H., Sudarshan, V. K., Bhat, S. & Koh, J. E. W. Application of entropies for automated diagnosis of epilepsy using EEG signals: A review. Knowl. Based Syst. 88, 85–96. https://doi.org/10.1016/j.knosys.2015.08.004 (2015).
Google Scholar
Lehnertz, K. Epilepsy and nonlinear dynamics. J. Biol. Phys. 34, 253–266. https://doi.org/10.1007/s10867-008-9090-3 (2008).
Google Scholar
Andrzejak, R. G. et al. Improved spatial characterization of the epileptic brain by focusing on nonlinearity. Epilepsy Res. 69, 30–44. https://doi.org/10.1016/j.eplepsyres.2005.12.004 (2006).
Google Scholar
Travnicek, V. et al. Relative entropy is an easy-to-use invasive electroencephalographic biomarker of the epileptogenic zone. Epilepsia 64(4), 962–972. https://doi.org/10.1111/epi.17539 (2023).
Google Scholar
Staniek, M. & Lehnertz, K. Parameter selection for permutation entropy measurements. Int. J. Bifurc. Chaos 17, 3729–3733. https://doi.org/10.1142/S0218127407019652 (2007).
Google Scholar
Sathyanarayana, A. et al. Nonlinear analysis of visually normal EEGs to differentiate benign childhood epilepsy with centrotemporal spikes (BECTS). Sci. Rep. 10, 1–12. https://doi.org/10.1038/s41598-020-65112-y (2020).
Google Scholar
Akbari, H. & Sadiq, M. T. Detection of focal and non-focal EEG signals using non-linear features derived from empirical wavelet transform rhythms. Phys. Eng. Sci. Med. 44, 157–171. https://doi.org/10.1007/s13246-020-00963-3 (2021).
Google Scholar
Cecchin, T. et al. Seizure lateralization in scalp EEG using Hjorth parameters. Clin. Neurophysiol. 121, 290–300. https://doi.org/10.1016/j.clinph.2009.10.033 (2010).
Google Scholar
Lahmiri, S. Generalized Hurst exponent estimates differentiate EEG signals of healthy and epileptic patients. Phys. A Stat. Mech. Its Appl. 490, 378–385. https://doi.org/10.1016/j.physa.2017.08.084 (2018).
Google Scholar
Indiradevi, K. P., Elias, E. & Sathidevi, P. S. Complexity analysis of electroencephalogram records of epileptic patients using Hurst exponent. Int. J. Med. Eng. Inform. 1, 368–380. https://doi.org/10.1504/IJMEI.2009.022647 (2009).
Google Scholar
Subha, D. P., Joseph, P. K., Acharya, U. R. & Lim, C. M. EEG signal analysis: A survey. J. Med. Syst. 34, 195–212. https://doi.org/10.1007/s10916-008-9231-z (2010).
Google Scholar
Rajkomar, A., Dean, J. & Kohane, I. Machine learning in medicine. N. Engl. J. Med. 380, 1347–1358. https://doi.org/10.1056/nejmra1814259 (2019).
Google Scholar
Abbasi, B. & Goldenholz, D. M. Machine learning applications in epilepsy. Epilepsia 60, 2037–2047. https://doi.org/10.1111/epi.16333 (2019).
Google Scholar
Mirchi, N. et al. Decoding intracranial EEG with machine learning: A systematic review. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2022.913777 (2022).
Google Scholar
Daoud, H. & Bayoumi, M. Deep learning approach for epileptic focus localization. IEEE Trans. Biomed. Circuits Syst. https://doi.org/10.1109/TBCAS.2019.2957087 (2019).
Google Scholar
Lemoine, É. et al. Machine-learning for the prediction of one-year seizure recurrence based on routine electroencephalography. Sci. Rep. 13, 12650. https://doi.org/10.1038/s41598-023-39799-8 (2023).
Google Scholar
Lin, L. C. et al. Early prediction of medication refractoriness in children with idiopathic epilepsy based on scalp EEG analysis. Int. J. Neural Syst. https://doi.org/10.1142/S0129065714500233 (2014).
Google Scholar
Ouyang, C. S. et al. Quantitative EEG findings and response to treatment with antiepileptic medications in children with epilepsy. Brain Dev. 40, 26–35. https://doi.org/10.1016/j.braindev.2017.07.004 (2018).
Google Scholar
Qazi, E. H. et al. Single trial EEG patterns for the prediction of individual differences in fluid intelligence. Front. Hum. Neurosci. 10, 1–19. https://doi.org/10.3389/fnhum.2016.00687 (2017).
Google Scholar
Jia, W., Sun, M., Lian, J. & Hou, S. Feature dimensionality reduction: A review. Complex Intell. Syst. 8, 2663–2693. https://doi.org/10.1007/s40747-021-00637-x (2022).
Google Scholar
Witton, C. et al. Rogue bioelectrical waves in the brain: The Hurst exponent as a potential measure for presurgical mapping in epilepsy. J. Neural Eng. 16, 056019. https://doi.org/10.1088/1741-2552/ab225e (2019).
Google Scholar
Supriya, S., Siuly, S., Wang, H. & Zhang, Y. Automated epilepsy detection techniques from electroencephalogram signals: A review study. Health Inf. Sci. Syst. 8, 1–15. https://doi.org/10.1007/s13755-020-00129-1 (2020).
Google Scholar
Sameer, M. & Gupta, B. Detection of epileptical seizures based on alpha band statistical features. Wirel. Pers. Commun. 115, 909–925. https://doi.org/10.1007/s11277-020-07542-5 (2020).
Google Scholar
Park, T., Lee, M., Jeong, T., Shin, Y. I. & Park, S. M. Quantitative analysis of EEG power spectrum and EMG median power frequency changes after continuous passive motion mirror therapy system. Sensors (Switzerland) https://doi.org/10.3390/s20082354 (2020).
Google Scholar
Larsson, P. G. & Kostov, H. Lower frequency variability in the alpha activity in EEG among patients with epilepsy. Clin. Neurophysiol. 116, 2701–2706. https://doi.org/10.1016/j.clinph.2005.07.019 (2005).
Google Scholar
Kang, J. H., Chung, Y. G. & Kim, S. P. An efficient detection of epileptic seizure by differentiation and spectral analysis of electroencephalograms. Comput. Biol. Med. 66, 352–356. https://doi.org/10.1016/j.compbiomed.2015.04.034 (2015).
Google Scholar
Ouyang, C. S., Yang, R. C., Wu, R. C., Chiang, C. T. & Lin, L. C. Determination of antiepileptic drugs withdrawal through EEG Hjorth parameter analysis. Int. J. Neural Syst. 30, 1–16. https://doi.org/10.1142/S0129065720500367 (2020).
Google Scholar
Pepi, C. et al. Can presurgical interhemispheric EEG connectivity predict outcome in hemispheric surgery? A brain machine learning approach. Brain Sci. 13, 71. https://doi.org/10.3390/brainsci13010071 (2022).
Google Scholar
Yossofzai, O. et al. Development and validation of machine learning models for prediction of seizure outcome after pediatric epilepsy surgery. Epilepsia 63, 1956–1969. https://doi.org/10.1111/epi.17320 (2022).
Google Scholar
Arle, J. E., Perrine, K., Devinsky, O. & Doyle, W. K. Neural network analysis of preoperative variables and outcome in epilepsy surgery. J. Neurosurg. 90, 998–1004. https://doi.org/10.3171/jns.1999.90.6.0998 (1999).
Google Scholar
Garcia Gracia, C. et al. Seizure freedom score: A new simple method to predict success of epilepsy surgery. Epilepsia 56, 359–365. https://doi.org/10.1111/epi.12892 (2015).
Google Scholar
Gracia, C. G. et al. Predicting seizure freedom after epilepsy surgery, a challenge in clinical practice. Epilepsy Behav 95, 124–130. https://doi.org/10.1016/j.yebeh.2019.03.047 (2019).
Google Scholar
Sinclair, B. et al. Machine learning approaches for imaging-based prognostication of the outcome of surgery for mesial temporal lobe epilepsy. Epilepsia 63, 1081–1092. https://doi.org/10.1111/epi.17217 (2022).
Google Scholar
Dewi, T., Masruhim, M. A. R. S. Recommending Training Set Sizes for Classification Contact. Lab Penelit Dan Pengemb FARMAKA Trop Fak Farm Univ Mualawarman, Samarinda, Kalimantan Timur 5–24 (2016).
Armañanzas, R. et al. Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. PLoS One 8, e62819. https://doi.org/10.1371/journal.pone.0062819 (2013).
Google Scholar
Eriksson, M. H. et al. Predicting seizure outcome after epilepsy surgery: Do we need more complex models, larger samples, or better data?. Epilepsia https://doi.org/10.1111/epi.17637 (2023).
Google Scholar
Smolyansky, E. D., Hakeem, H., Ge, Z., Chen, Z. & Kwan, P. Machine learning models for decision support in epilepsy management: A critical review. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.108273 (2021).
Google Scholar
Linardatos, P., Papastefanopoulos, V. & Kotsiantis, S. Explainable AI: A review of machine learning interpretability methods. Entropy 23, 1–45. https://doi.org/10.3390/e23010018 (2021).
Google Scholar
Ein Shoka, A. A., Dessouky, M. M., El-Sayed, A. & Hemdan, E. E. D. EEG seizure detection: Concepts, techniques, challenges, and future trends. Multimed. Tools Appl. https://doi.org/10.1007/s11042-023-15052-2 (2023).
Google Scholar
Ayman, U. et al. Epileptic patient activity recognition system using extreme learning machine method. Biomedicines 11, 816. https://doi.org/10.3390/biomedicines11030816 (2023).
Google Scholar
Gallotto, S. & Seeck, M. EEG biomarker candidates for the identification of epilepsy. Clin. Neurophysiol. Pract. 8, 32–41. https://doi.org/10.1016/j.cnp.2022.11.004 (2023).
Google Scholar
Zhuang, X. et al. Single-scale time-dependent window-sizes in sliding-window dynamic functional connectivity analysis: A validation study. Neuroimage 220, 117111. https://doi.org/10.1016/j.neuroimage.2020.117111 (2020).
Google Scholar
Yotov, K., Hadzhikolev, E. & Hadzhikoleva, S. Determining the number of neurons in artificial neural networks for approximation, trained with algorithms using the Jacobi matrix. TEM J. 9, 1320–1329. https://doi.org/10.18421/TEM94-02 (2020).
Google Scholar
Babani, L., Jadhav, S. & Chaudhari, B. Scaled conjugate gradient based adaptive ANN control for SVM-DTC induction motor drive. IFIP Adv. Inf. Commun. Technol. 475, 384–395. https://doi.org/10.1007/978-3-319-44944-9_33 (2016).
Google Scholar
