Current-diffusion model for metasurface structure discoveries with spatial-frequency dynamics

Machine Learning


  • Pendry, J. B. et al. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  • Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article 
    MathSciNet 

    Google Scholar 

  • Veselago, V. G. et al. Electrodynamics of substances with simultaneously negative electrical and magnetic permeabilities. Sov. Phys. Uspekhi 10, 504–514 (1968).

    Article 

    Google Scholar 

  • Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article 

    Google Scholar 

  • Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article 

    Google Scholar 

  • Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article 

    Google Scholar 

  • Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article 

    Google Scholar 

  • Liu, M. et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light: Sci. Appl. 10, 107 (2021).

    Article 

    Google Scholar 

  • Wang, S. et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light: Sci. Appl. 10, 24 (2021).

    Article 

    Google Scholar 

  • So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020).

    Article 

    Google Scholar 

  • Wang, Y. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12, 5560 (2021).

    Article 

    Google Scholar 

  • Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention. Nat. Photonics 14, 383–390 (2020).

    Article 

    Google Scholar 

  • Song, Q. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat. Commun. 11, 2651 (2020).

    Article 

    Google Scholar 

  • Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

    Article 

    Google Scholar 

  • Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019).

    Article 

    Google Scholar 

  • Wang, Z., Zhang, H., Zhao, H., Cui, T. J. & Li, L. Intelligent electromagnetic metasurface camera: system design and experimental results. Nanophotonics 11, 2011–2024 (2022).

    Article 

    Google Scholar 

  • Li, H.-Y. et al. Intelligent electromagnetic sensing with learnable data acquisition and processing. Patterns 1, 100006 (2020).

    Article 

    Google Scholar 

  • Zhang, L. et al. A wireless communication scheme based on space- and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).

    Article 

    Google Scholar 

  • Zhao, J. et al. Programmable time-domain digital coding metasurface for nonlinear harmonic manipulation and new wireless communication systems. Natl Sci. Rev. 6, 231–238 (2019).

    Article 

    Google Scholar 

  • Gradoni, G. et al. Smart radio environments. Preprint at https://arxiv.org/abs/2111.08676 (2021).

  • Xiao, C. et al. Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 643, 80–88 (2025).

    Article 

    Google Scholar 

  • Budhu, J. & Grbic, A. Fast and accurate optimization of metasurfaces with gradient descent and the Woodbury matrix identity. IEEE Trans. Antennas Propag. 71, 7679–7683 (2023).

    Article 

    Google Scholar 

  • Mansouree, M. et al. Multifunctional 2.5D metastructures enabled by adjoint optimization. Optica 7, 77–84 (2020).

    Article 

    Google Scholar 

  • Brown, T. & Mojabi, P. Cascaded metasurface design using electromagnetic inversion with gradient-based optimization. IEEE Trans. Antennas Propag. 70, 2033–2045 (2022).

    Article 

    Google Scholar 

  • Xu, D. et al. Efficient design of a dielectric metasurface with transfer learning and genetic algorithm. Opt. Mater. Express 11, 1852–1862 (2021).

    Article 

    Google Scholar 

  • Thompson, J. R. Particle swarm optimization of polymer-embedded broadband metasurface reflectors. Opt. Express 298, 43421–43434 (2021).

    Article 

    Google Scholar 

  • Wu, N. et al. Intelligent nanophotonics: when machine learning sheds light. eLight 5, 5 (2025).

    Article 

    Google Scholar 

  • Jiang, J., Chen, M. & Fan, J. A. Deep neural networks for the evaluation and design of photonic devices. Nat. Rev. Mater. 6, 679–700 (2021).

    Article 

    Google Scholar 

  • Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2021).

    Article 

    Google Scholar 

  • An, S. et al. A Deep learning approach for objective-driven all-dielectric metasurface design. ACS Photonics 6, 3196–3207 (2019).

    Article 

    Google Scholar 

  • Zhang, Q. Machine-learning designs of anisotropic digital coding metasurfaces. Adv. Theory Simul. 2, 1800132 (2019).

    Article 

    Google Scholar 

  • Tang, Y. et al. Physics-informed recurrent neural network for time dynamics in optical resonances. Nat. Comput. Sci. 2, 169–178 (2022).

    Article 

    Google Scholar 

  • Khatib, O., Ren, S., Malof, J. & Padilla, W. J. Learning the physics of all-dielectric metamaterials with deep Lorentz neural networks. Adv. Opt. Mater. 10, 2200097 (2022).

    Article 

    Google Scholar 

  • An, S. et al. Multifunctional metasurface design with a generative adversarial network. Adv. Opt. Mater. 9, 2001433 (2021).

    Article 

    Google Scholar 

  • Liu, Z. et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater. 32, 1904790 (2020).

    Article 

    Google Scholar 

  • Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K. Y. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).

    Article 

    Google Scholar 

  • Xiong, B. et al. Deep learning design for multiwavelength infrared image sensors based on dielectric freeform metasurface. Adv. Opt. Mater. 12, 2302200 (2024).

    Article 

    Google Scholar 

  • Ma, W. et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Adv. Mater. 34, 2110022 (2022).

    Article 

    Google Scholar 

  • Ma, W. et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019).

    Article 

    Google Scholar 

  • Tanriover, I. et al. Deep generative modeling and inverse design of manufacturable free-form dielectric metasurfaces. ACS Photonics 10, 875–883 (2022).

    Google Scholar 

  • George, E. K. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article 

    Google Scholar 

  • Lu, L., Jin, P. Z., Pang, G. F., Zhang, Z. Q. & Karniadakis, G. E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3, 218 (2021).

    Article 

    Google Scholar 

  • Bastek, J. H. & Kochmann, D. M. Inverse design of nonlinear mechanical metamaterials via video denoising diffusion models. Nat. Mach. Intell. 5, 1466–1475 (2023).

    Article 

    Google Scholar 

  • Jin, H. et al. Mechanical characterization and inverse design of stochastic architected metamaterials using neural operators. Preprint at https://arxiv.org/abs/2311.13812 (2023).

  • Rao, C. et al. Encoding physics to learn reaction–diffusion processes. Nat. Mach. Intell. 5, 765–779 (2023).

    Article 

    Google Scholar 

  • Li, Z. et al. Learning spatiotemporal dynamics with a pretrained generative model. Nat. Mach. Intell. 6, 1566–1579 (2024).

    Article 

    Google Scholar 

  • Ho, J., Jain, A. & Abbeel, P. Denoising diffusion probabilistic models. In Proc. 34th International Conference on Neural Information Processing Systems Vol. 33 (eds Caron, M. et al.) 6840–6851 (Curran Associates, 2020).

  • Ho, J. & Salimans, T. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications https://openreview.net/pdf?id=qw8AKxfYbI (2021).

  • Wei, Z. & Chen, X. Physics-inspired learning method for solving full-wave nonlinear inverse scattering problems. IEEE Trans. Antennas Propag. 67, 6138–6148 (2019).

    Article 

    Google Scholar 

  • Wang, Y., Zong, Z., He, S., Song, R. & Wei, Z. Push the generalization limitation of learning approaches by multi-domain weight-sharing for full-wave inverse scattering. IEEE Trans. Geosci. Remote Sens. 61, 2003814 (2023).

    Google Scholar 

  • Ma, H. et al. A comprehensive survey on NSGA-II for multi-objective optimization and applications. Artif. Intell. Rev. 56, 15217–15270 (2023).

    Article 

    Google Scholar 

  • Jiang, Z. et al. Near-field optical mode engineering-enabled freeform nonlocal metasurfaces. Preprint at http://arxiv.org/abs/2506.15495 (2025).

  • Mao, C. & Fan, J. A. Accurate and scalable deep Maxwell solvers using multilevel iterative methods. Preprint at http://arxiv.org/abs/2509.03622 (2025).

  • Lu, H. et al. VDT: general-purpose video diffusion transformers via mask modeling. In Twelfth International Conference on Learning Representations https://openreview.net/forum?id=Un0rgm9f04 (ICLR, 2024).

  • Peebles, W. & Xie, S. Scalable diffusion models with transformers. In Proc. IEEE/CVF International Conference on Computer Vision (eds Kosecka, J. et al.) 4195–4205 (IEEE, 2023).

  • Oord, A. V. D. et al. Neural discrete representation learning. In Proc. 31st International Conference on Neural Information Processing Systems Vol. 30 (eds Guyon, I. et al.) 6309–6318 (Curran Associates, 2017).

  • Kim, S. Implementation of generating diverse high-fidelity images with VQ-VAE-2, in PyTorch. GitHub https://github.com/rosinality/vq-vae-2-pytorch (2020).

  • Su, J. et al. Roformer: enhanced transformer with rotary position embedding. Neurocomputing 568, 127063 (2024).

    Article 

    Google Scholar 

  • Nichol, A. Q. & Dhariwal, P. Improved denoising diffusion probabilistic models. In Proc. 38th International Conference on Machine Learning Vol. 139 (eds Meila, M. & Zhang, T.) 8162–8171 (PMLR, 2021).

  • Song, J., Meng, C. & Ermon, S. Denoising diffusion implicit models. In 9th International Conference on Learning Representations https://openreview.net/forum?id=St1giarCHLP (ICLR, 2021).

  • Li, E. et al. ISEE213/current-diffusion-model: metaAI: v10. Zenodo https://doi.org/10.5281/zenodo.16875307 (2025).



  • Source link