Predicting dyslipidemia incidence: unleashing machine learning algorithms on Lifestyle Promotion Project data | BMC Public Health

Machine Learning


  • Wyszyńska J et al. Association and Risk factors for hypertension and dyslipidemia in young adults from Poland. Int J Environ Res Public Health. 2023;20(2).

  • Marateb HR, et al. Prediction of dyslipidemia using gene mutations, family history of diseases and anthropometric indicators in children and adolescents: the CASPIAN-III study. Comput Struct Biotechnol J. 2018;16:121–30.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Esfarjani SV, Zakerkish M. Dyslipidemia in youth: Epidemiology, pathophysiology, screening, management, and treatment: a review of the literature. J Family Med Prim Care. 2022;11(12):7519–26.

    Article 
    PubMed 

    Google Scholar 

  • Smith DG. Epidemiology of dyslipidemia and economic burden on the healthcare system. Am J Manag Care. 2007;13(Suppl 3):S68–71.

    PubMed 

    Google Scholar 

  • Pirillo A, et al. Global epidemiology of dyslipidaemias. Nat Rev Cardiol. 2021;18(10):689–700.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parray IA, Parry MA, Latief M. Prevalence of dyslipidemia in school children of Kashmir valley. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S47–54.

    Article 
    PubMed 

    Google Scholar 

  • Tabrizi JS, et al. Prevalence of Dyslipidemia in Urban and Rural areas of the Northwest of Iran: the Sociodemographic, Dietary and psychological determinants. Iran J Public Health. 2019;48(5):925–33.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kopin L, Lowenstein C, Dyslipidemia. Ann Intern Med. 2017;167(11):Itc81–96.

    Article 
    PubMed 

    Google Scholar 

  • Katsiki N, Mikhailidis DP, Mantzoros CS. Non-alcoholic fatty liver disease and dyslipidemia: an update. Metabolism. 2016;65(8):1109–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russo G, et al. Atherogenic dyslipidemia and diabetic nephropathy. J Nephrol. 2020;33(5):1001–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wojcik-Baszko D, Charkiewicz K, Laudanski P. Role of dyslipidemia in preeclampsia-A review of lipidomic analysis of blood, placenta, syncytiotrophoblast microvesicles and umbilical cord artery from women with preeclampsia. Prostaglandins Other Lipid Mediat. 2018;139:19–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsumoto K, et al. Identifying unrecognized airflow obstruction in cases with lifestyle-related diseases using a data mining system with electronic medical records. Rinsho Byori. 2011;59(2):128–33.

    PubMed 

    Google Scholar 

  • Tamaoka A. [Dyslipidemia and Dementia]. Brain Nerve. 2016;68(7):737–42.

    CAS 
    PubMed 

    Google Scholar 

  • Bamba V. Update on screening, etiology, and treatment of dyslipidemia in children. J Clin Endocrinol Metab. 2014;99(9):3093–102.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitsala A, et al. Artificial Intelligence in Colorectal Cancer Screening, diagnosis and treatment. A new era. Curr Oncol. 2021;28(3):1581–607.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amisha, et al. Overview of artificial intelligence in medicine. J Family Med Prim Care. 2019;8(7):2328–31.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarker IH. Machine learning: algorithms, real-world applications and research directions. SN Comput Sci. 2021;2(3):160.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haneef R, et al. Use of artificial intelligence for public health surveillance: a case study to develop a machine learning-algorithm to estimate the incidence of diabetes mellitus in France. Arch Public Health. 2021;79(1):168.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali R, Hardie RC, Narayanan BN, De Silva S. Deep learning ensemble methods for skin lesion analysis towards melanoma detection. In: Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON); Dayton, OH, USA. 15–19 July 2019. pp. 311–316.

  • Zubair Hasan K, Hasan Z. Performance evaluation of ensemble-based machine learning techniques for prediction of chronic kidney disease. Emerging Research in Computing, Information, Communication and Applications. Berlin/Heidelberg, Germany: Springer; 2019. pp. 415–26.

    Chapter 

    Google Scholar 

  • Nahar N, Ara F, Neloy MAI, Barua V, Hossain MS, Andersson K. December. A comparative analysis of the ensemble method for liver disease prediction. In: Proceedings of the 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET); Dhaka, Bangladesh. 23–24 2019. pp. 1–6.

  • Lakshmanarao A, Srisaila A, Kiran TSR. Heart disease prediction using feature selection and ensemble learning techniques. In: Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV); Tirunelveli, India. 4–6 February 2021. pp. 994–998.

  • Shorewala V. Early detection of coronary heart disease using ensemble techniques. Inf Med Unlocked. 2021;26:100655.

    Article 

    Google Scholar 

  • Filiz E. Evaluation of Match results of five successful football Clubs with Ensemble Learning algorithms. Res Q Exerc Sport. 2023;94(3):773–82.

    Article 
    PubMed 

    Google Scholar 

  • Gong H, Wang M, Zhang H, Elahe MF, Jin M. An explainable AI Approach for the Rapid diagnosis of COVID-19 using ensemble learning algorithms. Front Public Health. 2022;10:874455.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cui S, et al. Research on Risk Prediction of Dyslipidemia in Steel Workers Based on Recurrent Neural Network and LSTM Neural Network. IEEE Access. 2020;8:34153–61.

    Article 

    Google Scholar 

  • Karimi-Alavijeh F, Jalili S, Sadeghi M. Predicting metabolic syndrome using decision tree and support vector machine methods. ARYA Atheroscler. 2016;12(3):146–52.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gutiérrez-Esparza G, Pulido T, Martínez-García M, Ramírez-delReal T, Groves-Miralrio LE, Márquez-Murillo MF, Amezcua-Guerra LM, Vargas-Alarcón G, Hernández-Lemus E. A machine learning approach to personalized predictors of dyslipidemia: a cohort study. Front Public Health. 2023;11:1213926.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim H, Lim DH, Kim Y. Classification and prediction on the effects of Nutritional Intake on Overweight/Obesity, dyslipidemia, hypertension and type 2 diabetes Mellitus using Deep Learning Model: 4-7th Korea National Health and Nutrition Examination Survey. Int J Environ Res Public Health. 2021;18(11):5597.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavolinejad H, Roshani S, Rezaei N, et al. A machine learning approach to evaluate the state of hypertension care coverage: from 2016 STEPs survey in Iran. PLoS ONE. 2022;17(9):e0273560. PMID: 36129936; PMCID: PMC9491523.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akyea RK, Qureshi N, Kai J, et al. Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care. NPJ Digit Med. 2020;3:142. PMID: 33145438; PMCID: PMC7603302.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buyrukoglu G, Buyrukoglu S, Topalcengiz Z. Comparing regression models with Count Data to Artificial neural network and Ensemble Models for Prediction of Generic Escherichia coli Population in Agricultural ponds based on Weather Station measurements. Microb Risk Anal. 2021;19. https://doi.org/10.1016/j.mran.2021.100171.

  • Buyrukoglu S, Akbas A. Machine learning based early prediction of type 2 diabetes: a New Hybrid Feature Selection Approach using correlation matrix with Heatmap and SFS. Balkan J Electr Comput Eng. 2022. https://doi.org/10.17694/bajece.973129.

    Article 

    Google Scholar 

  • Tabrizi JS, et al. Introducing the objectives, procedures and structure of lifestyle promotion project (LPP): phase I. Depiction Health. 2016;7(2):1–7.

    Google Scholar 

  • Tabrizi JS, et al. Prevention and Control of non-communicable diseases in Iranian Population: Life Style Promotion Project Phase II: study protocol. Iran J Public Health. 2018;47(9):1397–405.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sikri A, Singh NP, Dalal S. Chi-Square Method of Feature Selection: Impact of Pre-Processing of Data. Int J Intell Syst Appl Eng. 2023;11(3s):241-8. https://www.ijisae.org/index.php/IJISAE/article/view/2680.

  • Sulaiman MA, Labadin J. Feature selection based on mutual information. In: 2015 9th International Conference on IT in Asia (CITA), Sarawak, Malaysia, 2015. https://doi.org/10.1109/CITA.2015.7349827.

  • Hoque N, Bhattacharyya DK, Kalita J. MIFS-ND: a mutual information-based feature selection method. Expert Syst Appl. 2014;41:6371–85. https://doi.org/10.1016/j.eswa.2014.04.019.

    Article 

    Google Scholar 

  • Ranka S, Reddy M, Noheria A. Artificial Intelligence in Cardiovascular Medicine. Curr Opin Cardiol. 2020;36(1):26–35.

    Article 

    Google Scholar 

  • Moazemi S, Vahdati S, Li J, Kalkhoff S, Castano, Luis, Dewitz B, et al. Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review. Front Med. 2023;10. https://doi.org/10.3389/fmed.2023.1109411.

  • MacEachern SJ, Forkert ND. Machine learning for Precision Medicine. Genome. 2021;64(4):416–25.

    Article 
    PubMed 

    Google Scholar 

  • Masnadi Shirazi K, Shirinpour E, Masnadi Shirazi A, Nikniaz Z. Effect of cranberry supplementation on liver enzymes and cardiometabolic risk factors in patients with NAFLD: a randomized clinical trial. BMC Complement Med Ther. 2021;21(1):283. PMID: 34798892; PMCID: PMC8603491.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chauhan D, Anyanwu E, Goes J, et al. Comparison of machine learning and deep learning for view identification from cardiac magnetic resonance images. Clin Imaging. 2022;82:121–126. PMID: 34813989; PMCID: PMC8849564.

  • Vu HTT, Cao HL, Dong D, et al. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit. Front Neurorobot. 2022;16:923164. PMID: 36524219; PMCID: PMC9745042.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tsimenidis S, Vrochidou E, Papakostas GA. Int J Mol Sci. 2022;23(20):12272. PMID: 36293133; PMCID: PMC9603455. Omics Data and Data Representations for Deep Learning-Based Predictive Modeling.

  • Dimopoulos AC, Nikolaidou M, Caballero FF, et al. Machine learning methodologies versus cardiovascular risk scores, in predicting disease risk. BMC Med Res Methodol. 2018;18(1):179. PMID: 30594138; PMCID: PMC6311054.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu Y, Zhang J, Wang G, et al. Machine learning prediction models for mechanically ventilated patients: analyses of the MIMIC-III database. Front Med (Lausanne). 2021;8:662340. PMID: 34277655; PMCID: PMC8280779.

    Article 
    PubMed 

    Google Scholar 

  • Ozcan I, Aydin H, Cetinkaya A. Comparison of classification success rates of Different Machine Learning Algorithms in the diagnosis of breast Cancer. Asian Pac J Cancer Prev. 2022;23(10):3287–97. PMID: 36308351; PMCID: PMC9924317.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lin C, Liang Z, Liu J, Sun W. A machine learning-based prediction model pre-operatively for functional recovery after 1-year of hip fracture surgery in older people. Front Surg. 2023;10:1160085. PMID: 37351328; PMCID: PMC10282650.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Cholesterol Education Program. ATP III guidelines at-a-Glance quick desk reference. National Institutes of Health, National Heart, Lung, and Blood Institute]; 2001. [Bethesda, Md.]:[.

  • Ford ES, Gilles WH, Dietz WH. Prevalence of metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–9.

    Article 
    PubMed 

    Google Scholar 

  • Chehrei A, Sadrnia S, Keshteli AH, Daneshmand MA, Rezaei J. Correlation of dyslipidemia with waist to height ratio, waist circumference, and body mass index in Iranian adults. Asia Pac J Clin Nutr. 2007;16(2):248–53. PMID: 17468079.

    PubMed 

    Google Scholar 

  • Obsa MS, Ataro G, Awoke N, et al. Determinants of Dyslipidemia in Africa: a systematic review and Meta-analysis. Front Cardiovasc Med. 2022;8:778891. PMID: 35284497; PMCID: PMC8904727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Longo-Mbenza B, Mambune HF, Kasiam JB, et al. Relationship between waist circumference and cholesterol in Central africans with congestive heart failure. West Afr J Med. 2007 Jul-Sep;26(3):183–90. PMID: 18399331.

  • Feng RN, Zhao C, Wang C, et al. BMI is strongly associated with hypertension, and waist circumference is strongly associated with type 2 diabetes and dyslipidemia, in northern Chinese adults. J Epidemiol. 2012;22(4):317–23. PMID: 22672914; PMCID: PMC3798650.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández-Verdejo R, Galgani JE. Exploring the sequential accumulation of metabolic syndrome components in adults. Sci Rep. 2022;12(1):15925. PMID: 36151232; PMCID: PMC9508087.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Melguizo-Rodríguez Š, Costela-Ruiz L, García-Recio VJ. Role of vitamin D in the metabolic syndrome. Nutrients. 2021;13(3):830. PMID: 33802330; PMCID: PMC7999005.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guan C, Fu S, Zhen D, et al. Correlation of serum vitamin D with lipid profiles in middle-aged and elderly Chinese individuals. Asia Pac J Clin Nutr. 2020;29(4):839–45. PMID: 33377379.

    CAS 
    PubMed 

    Google Scholar 

  • Karhapää P, Pihlajamäki J, Pörsti I, et al. Diverse associations of 25-hydroxyvitamin D and 1,25-dihydroxy-vitamin D with dyslipidaemias. J Intern Med. 2010;268(6):604–10. PMID: 20831628.

    Article 
    PubMed 

    Google Scholar 

  • Šarac I, Djekić-Ivanković M, Debeljak-Martačić J, Editorial. The role of vitamin D in metabolic and cardiovascular health. Front Nutr. 2023;10:1193758. PMID: 37168055; PMCID: PMC10165735.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slusher AL, McAllister MJ, Huang CJ. A therapeutic role for vitamin D on obesity-associated inflammation and weight-loss intervention. Inflamm Res. 2015;64(8):565–75. PMID: 26142253.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goswami B, Bhattacharjya H, Sengupta S, et al. Hypovitaminosis D, Dyslipidemia, and thyroid dysfunction among adolescents and their associations with blood pressure in a Northeastern City of India. Indian J Community Med. 2021 Jul-Sep;46(3):484–8. PMID: 34759493; PMCID: PMC8575236.

  • Ghomari-Boukhatem H, Bouchouicha A, Mekki K, et al. Blood pressure, dyslipidemia and inflammatory factors are related to body mass index in scholar adolescents. Arch Med Sci. 2017;13(1):46–52. PMID: 28144254; PMCID: PMC5206370.

    Article 
    PubMed 

    Google Scholar 

  • Goswami B, Bhattacharjya H, Sengupta S, Bhattacharjee B, Hypovitaminosis D. Dyslipidemia, and thyroid dysfunction among adolescents and their associations with blood pressure in a Northeastern City of India. Indian J Community Med. 2021 Jul-Sep;46(3):484–8. https://doi.org/10.4103/ijcm.IJCM_907_20. PMID: 34759493; PMCID: PMC8575236.

  • Cruz NAN, de Oliveira LCG, Fernandes FB, Zaniqueli DDA, Oliosa PR, Mill JG, Casarini DE. Pediatric dyslipidemia is associated with increased urinary ACE activity, blood pressure values, and carotidal-femoral pulse wave velocity. Hypertens Res. 2023;46(6):1558–1569. https://doi.org/10.1038/s41440-023-01240-y. PMID: 36959504.

  • Obsa MS, Ataro G, Awoke N, Jemal B, Tilahun T, Ayalew N, Woldegeorgis BZ, Azeze GA, Haji Y. Determinants of Dyslipidemia in Africa: a systematic review and Meta-analysis. Front Cardiovasc Med. 2022;8:778891. https://doi.org/10.3389/fcvm.2021.778891. PMID: 35284497; PMCID: PMC8904727.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feldstein CA. Blood pressure effects of CPAP in nonresistant and resistant hypertension associated with OSA: A systematic review of randomized clinical trials. Clin Exp Hypertens. 2016;38(4):337 – 46. https://doi.org/10.3109/10641963.2016.1148156. PMID: 27159803.

  • DiNatale JC, Crowe-White KM. Effects of resveratrol supplementation on nitric oxide-mediated vascular outcomes in hypertension: A systematic review. Nitric Oxide. 2022;129:74–81. https://doi.org/10.1016/j.niox.2022.10.005. PMID: 36341766.

  • Humayun A, Shah AS, Alam S, Hussein H. Relationship of body mass index and dyslipidemia in different age groups of male and female population of Peshawar. J Ayub Med Coll Abbottabad. 2009 Apr-Jun;21(2):141–4. PMID: 20524492.

  • Cho SMJ, Lee HJ, Shim JS, Song BM, Kim HC. Associations between age and dyslipidemia are differed by education level: the Cardiovascular and Metabolic Diseases Etiology Research Center (CMERC) cohort. Lipids Health Dis. 2020;19(1):12. https://doi.org/10.1186/s12944-020-1189-y. PMID: 31954396; PMCID: PMC6969451.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu Z, Wu F, Lu Y, Wang Z, Zang J, Yu H, Guo C, Jia X, Shen X, Ding G. The Association of Dietary Cholesterol and fatty acids with Dyslipidemia in Chinese Metropolitan men and women. Nutrients. 2018;10(8):961. https://doi.org/10.3390/nu10080961. PMID: 30044444; PMCID: PMC6115945.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mehdipour P, Mohammadi E, Sepanlou SG, Ahmadvand A, Peykari N, Djalalinia S, Rezaei-Darzi E, Mohebi F, Moradi Y, Samaei M, Khosravi A, Jamshidi H, Farzadfar F, NASBOD Risk Collaborating Group. J Diabetes Metab Disord. 2022;21(2):1301–15. https://doi.org/10.1007/s40200-022-01052-w. PMID: 35668771; PMCID: PMC9150051. Level and trend of total plasma cholesterol in national and subnational of Iran: a systematic review and age-spatio-temporal analysis from 1990 to 2016.

  • Schofield JD, Liu Y, Rao-Balakrishna P, Malik RA, Soran H. Diabetes dyslipidemia. Diabetes Ther. 2016;7(2):203–19. https://doi.org/10.1007/s13300-016-0167-x. PMID: 27056202; PMCID: PMC4900977.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hirano T. Pathophysiology of Diabetic Dyslipidemia. J Atheroscler Thromb. 2018;25(9):771–82. https://doi.org/10.5551/jat.RV17023. PMID: 29998913; PMCID: PMC6143775.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaze AD, Santhanam P, Musani SK, Ahima R, Echouffo-Tcheugui JB. Metabolic Dyslipidemia and Cardiovascular outcomes in type 2 diabetes Mellitus: findings from the look AHEAD study. J Am Heart Assoc. 2021;10(7):e016947. https://doi.org/10.1161/JAHA.120.016947. PMID: 33728932; PMCID: PMC8174364.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clifton PM. Diet, exercise and weight loss and dyslipidaemia. Pathology. 2019;51(2):222–226. https://doi.org/10.1016/j.pathol.2018.10.013. PMID: 30528924.

  • Goldberg L, Elliot DL. The effect of physical activity on lipid and lipoprotein levels. Med Clin North Am. 1985;69(1):41–55. PMID: 3883078.

    CAS 
    PubMed 

    Google Scholar 

  • LeBlanc AG, Janssen I. Dose-response relationship between physical activity and dyslipidemia in youth. Can J Cardiol. 2010 Jun-Jul;26(6):201–5. https://doi.org/10.1016/s0828-282x(10)70400-1. PMID: 20548982; PMCID: PMC2903992.



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *